Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Advanced CNN-based remote sensing for mineral mapping of porphyry systems in the Gilgit region

Muhammad Munzareen1, Feroz Bibi1, Salman Ihsan1, Kausar Sultan Shah2, Muhammad Zaka Emad3

1Karakoram International University Gilgit, Gilgit Baltistan, Pakistan

2National University of Science & Technology, Balochistan Campus (NBC), Quetta, Pakistan

3King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia


Min. miner. depos. 2025, 19(4):53-62


https://doi.org/10.33271/mining19.04.053

Full text (PDF)


      ABSTRACT

      Purpose. This study aims to improve mineral identification in porphyry hydrothermal alteration zones, particularly in the challenging terrain of the Gilgit area, by combining remote sensing data with Convolutional Neural Networks (CNNs).

      Methods. Landsat 8 Collection 2 Level 1 imagery from the United States Geological Survey (USGS) was processed using ENVI 5.3 software. Spectral Angle Mapping (SAM) classification was applied to identify alteration minerals. The dataset was then augmented, normalized, and split into training (75%), validation (15%), and testing (15%) sets. A CNN model incorporating convolutional, pooling, and fully connected layers was developed to perform binary classification of mineral compositions.

      Findings. Advanced CNN-based remote sensing techniques have demonstrated significant potential in mapping porphyry systems. The CNN model achieved over 90% classification accuracy for minerals like feldspar and chalcocite, based on their spectral properties and dominant color features. This approach is beneficial in challenging terrains like Gilgit, where traditio-nal methods can be difficult and expensive.

      Originality. This study demonstrates the successful integration of remote sensing data with CNN-based algorithms for accurate mineral classification, providing a novel approach to overcoming the limitations of conventional field-based methods in challenging terrains.

      Practical implications. The approach provides a practical and efficient solution for remote mineral exploration, particularly in regions with limited accessibility, supporting more accurate and faster geological assessments in the Gilgit area.

      Keywords: porphyry hydrothermal alteration zones, ENVI, convolutional neural network, remote sensing, normalization, data augmentation, classification


      REFERENCES

  1. Sekandari, M., Masoumi, I., Beiranvand Pour, A., Muslim, A.M., Rahmani, O., Hashim, M., Zoheir, B., Pradhan, B., Misra, A., & Aminpour, S.M. (2020). Application of Landsat-8, Sentinel-2, ASTER and Worldview-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT). Remote Sensing, 12(8), 1239. https://doi.org/10.3390/rs12081239
  2. Brimhall, G.H., Dilles, J.H., & Proffett, J.M. (2005). The role of geologic mapping in mineral exploration. Wealth Creation in the Minerals Industry, 221–241. https://doi.org/10.5382/SP.12.11
  3. Cracknell, M.J., & Reading, A.M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33. https://doi.org/10.1016/j.cageo.2013.10.008
  4. El Janati, M. (2019). Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco. Journal of African Earth Sciences, 151, 95–106. https://doi.org/10.1016/j.jafrearsci.2018.12.002
  5. Eslami, A., Ghaderi, M., Rajendran, S., Pour, A.B., & Hashim, M. (2015). Integration of ASTER and Landsat TM remote sensing data for chromite prospecting and lithological mapping in Neyriz ophiolite zone, South Iran. Resource Geology, 65(4), 375–388. https://doi.org/10.1111/rge.12076
  6. Salaj, S.S., Srivastava, S.K., Dugal, R., Upadhyay, R., Suresh Babu, D.S., & Kaliraj, S. (2018). Application of ASTER remote sensing for lithological mapping in the Udaipur District of Rajasthan, India. Applications and Challenges of Geospatial Technology, 99–119. https://doi.org/10.1007/978-3-319-99882-4_7
  7. Xu, Y., Chen, J., & Meng, P. (2019). Detection of alteration zones using hyperspectral remote sensing data from Dapingliang skarn copper deposit and its surrounding area, Shanshan County, Xinjiang Uygur autonomous region, China. Journal of Visual Communication and Image Representation, 58, 67–78. https://doi.org/10.1016/j.jvcir.2018.11.032
  8. Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., & Righini, G. (2012). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences, 6(11), 4529–4546. https://doi.org/10.1007/s12517-012-0725-0
  9. Hosseinjani, M., & Tangestani, M.H. (2011). Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran. International Journal of Digital Earth, 4(6), 487–504. https://doi.org/10.1080/17538947.2010.550937
  10. Amer, R., Kusky, T., & El Mezayen, A. (2012). Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1), 121–134. https://doi.org/10.1016/j.asr.2011.09.024
  11. Traore, M., Takodjou Wambo, J.D., Ndepete, C.P., Tekin, S., Pour, A.B., & Muslim, A.M. (2020). Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. Journal of African Earth Sciences, 170, 103933. https://doi.org/10.1016/j.jafrearsci.2020.103933
  12. Mars, J.C., & Rowan, L.C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114(9), 2011–2025. https://doi.org/10.1016/j.rse.2010.04.008
  13. Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7(12), 16398–16421. https://doi.org/10.3390/rs71215841
  14. Shirmard, H., Farahbakhsh, E., Müller, R.D., & Chandra, R. (2022). A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268, 112750. https://doi.org/10.1016/j.rse.2021.112750
  15. Rezaei, A., Hassani, H., Moarefvand, P., & Golmohammadi, A. (2019). Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods. Geology, Ecology, and Landscapes, 4(1), 59–70. https://doi.org/10.1080/24749508.2019.1585657
  16. Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., & Jafari, M.R. (2019). Determination of hydrothermal alteration zones using remote sensing methods in Tirka Area, Toroud, NE Iran. Journal of the Indian Society of Remote Sensing, 47(11), 1817–1830. https://doi.org/10.1007/s12524-019-01032-3
  17. Asl, R.A., Afzal, P., Adib, A., & Yasrebi, A.B. (2015). Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data. Arabian Journal of Geosciences, 8(5), 2997–3006. https://doi.org/10.1007/s12517-014-1366-2
  18. Ferrier, G., White, K., Griffiths, G., Bryant, R., & Stefouli, M. (2002). The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing, 23(2), 341–356. https://doi.org/10.1080/01431160010003857
  19. Fu, H., Cheng, Q., Jing, L., & Ge, Y. (2021). Deep learning-based hydrothermal alteration mapping using GaoFen-5 hyperspectral data in the Duolong Ore District, Western Tibet, China. Journal of Applied Remote Sensing, 15(4), 044512. https://doi.org/10.1117/1.JRS.15.044512
  20. Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782. https://doi.org/10.1109/LGRS.2017.2681128
  21. Yan, Z., Piramuthu, R., Jagadeesh, V., Di, W., & Decoste, D. (2019). Hierarchical deep convolutional neural network for image classification. Google Patents.
  22. Wulder, M.A., White, J.C., Goward, S.N., Masek, J.G., Irons, J.R., Herold, M., Cohen, W.B., Loveland, T.R., & Woodcock, C.E. (2008). Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112(3), 955–969. https://doi.org/10.1016/j.rse.2007.07.004
  23. Prost, G.L. (2013). Remote sensing for geoscientists. London, United Kingdom: CRC Press, 702 p. https://doi.org/10.1201/b15638
  24. Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22–36. https://doi.org/10.1016/j.isprsjprs.2015.10.004
  25. Zhang, T., Yi, G., Li, H., Wang, Z., Tang, J., Zhong, K., Li, Y., Wang, Q., & Bie, X. (2016). Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sensing, 8(11), 890. https://doi.org/10.3390/rs8110890
  26. Rowan, L.C., & Mars, J.C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X
  27. Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827
  28. Yamashita, R., Nishio, M., Do, R.K.G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9
  29. Ahmad, L., Shah, M.T., & Khan, S.D. (2016). Reflectance spectroscopy and remote sensing data for finding sulfide-bearing alteration zones and mapping geology in Gilgit-Baltistan, Pakistan. Earth Science Informatics, 9(1), 113–121. https://doi.org/10.1007/s12145-015-0239-x
  30. Khan, S., Rehman, S., Zeb Khan, A., Amjad Khan, M., & Tahir Shah, M. (2010). Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 73(7), 1820–1827. https://doi.org/10.1016/j.ecoenv.2010.08.016
  31. Лицензия Creative Commons