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Abstract

Purpose. This study aims to improve mineral identification in porphyry hydrothermal alteration zones, particularly in the
challenging terrain of the Gilgit area, by combining remote sensing data with Convolutional Neural Networks (CNNGs).

Methods. Landsat 8 Collection 2 Level 1 imagery from the United States Geological Survey (USGS) was processed using
ENVI 5.3 software. Spectral Angle Mapping (SAM) classification was applied to identify alteration minerals. The dataset was
then augmented, normalized, and split into training (75%), validation (15%), and testing (15%) sets. A CNN model incorporating
convolutional, pooling, and fully connected layers was developed to perform binary classification of mineral compositions.

Findings. Advanced CNN-based remote sensing techniques have demonstrated significant potential in mapping porphyry
systems. The CNN model achieved over 90% classification accuracy for minerals like feldspar and chalcocite, based on their
spectral properties and dominant color features. This approach is beneficial in challenging terrains like Gilgit, where traditio-
nal methods can be difficult and expensive.

Originality. This study demonstrates the successful integration of remote sensing data with CNN-based algorithms for
accurate mineral classification, providing a novel approach to overcoming the limitations of conventional field-based methods
in challenging terrains.

Practical implications. The approach provides a practical and efficient solution for remote mineral exploration, particular-
ly in regions with limited accessibility, supporting more accurate and faster geological assessments in the Gilgit area.

Keywords: porphyry hydrothermal alteration zones, ENVI, convolutional neural network, remote sensing, normalization,
data augmentation, classification

1. Introduction associated lithological, structural, and hydrothermal change

Remote sensing has provided tools for geological explo-  types [4]-[7]. These strategies are used in mineral exploration
ration for almost four decades. Nowadays, many satellite ~ t0 identify structural features that may indicate controlled
remote sensing datasets are accessible freely and can be mineralization [8]. Remote sensing can effectively identify

extensively used for mineral exploration projects [1]. Geo- ~ hydrothermal alteration _zones due to changes in. PCDs
logical maps help provide and investigate the locations of (porphyry copper deposits) cause.d. by ﬂmd. expansion [9].
geological features associated with target mineralization, Remote sensing 1S frequently Utll.lzed for 11th019glca1 qnd
which is one of the most basic procedures in mineral explora- sfcru(j‘tural mapping, as well as mineral prospecting, which
tion. These maps may contain features such as the lithologi-  significantly reduces the expense of field research [10]. Map-
cal units, alteration types, structures, and indicator mine- ping surface-altered rocks and their associated mineralization

rals [2]. Geological mapping technologies have evolved, and gsing satellite' remote sepsing photogrqphy isa v.aluable asset
today, the combination of remote sensing data and modern 11 any geologlca'l and mineral exploration operation [11].
data analytics, such as machine learning, is attracting signifi- ~ Several studies have demonstrated the reliability of mul-
cant interest [3]. This combination enables geologists to  tispectral and hyperspectral remote sensing data processing
address the typical challenges associated with traditional  in identifying hydrothermal alteration zones [12]. Scientists
methods, as illustrated in Figure 1 below. have been able to propose novel and efficient methods for

In many environments where standard field surveys are data.processing due tol the extraordinary increase .in the di-
complex and time-consuming, the application of remote  VErSity of remote sensing data collected from various plat-
sensing methods can distinguish mineralization based on  forms and ground measurements [13].
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Figure 1. Integration of remote sensing & machine learning [14]

Over the past few decades, numerous image processing
techniques have been developed to aid in the identification,
differentiation, and enhancement of features such as lithologi-
cal units, alteration zones, and structures using remote sens-
ing data [14]. The Enhanced Thematic Mapper Plus (ETM+),
Operational Land Imager (OLI), Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), and
Hyperion are among the most recent multispectral and hyper-
spectral remote sensing instruments that have expanded the
use of satellite imagery for mapping geological features [15].
The study of multispectral images is crucial for the explora-
tion and identification of hydrothermally altered areas [16].
Remote sensing (ASTER) images with suitable spectral and
spatial resolutions are utilized to identify hydrothermal alte-
ration and structures effectively [17].

Economic mineralization is often formed through liquid
processes, which significantly impact the mineralogy and
chemistry of the host rock. This alteration can result in
various mineral assemblages that differ depending on the
location, intensity, and duration of the flow events. When
exposed at the Earth’s surface, this alteration can be traced
occasionally in a zonal pattern, in the simplest instance, con-
centrically, around a core of highest-grade alteration and
most economic significance [18]. Mapping alteration zones
may benefit from the knowledge that remote sensing offers on
the surface characteristics of exploration sites. Iron-rich and
iron-poor lithologies are two examples of the different types of
rocks that can be distinguished using broadband sensors, such
as the Landsat Thematic Mapper (TM) and the SPOT (Satellite
pour I’Observation de la Terre). Spectral absorptions in the
visible to shortwave infrared specific to certain individual
minerals can be detected using narrowband field devices like
the Analytical Systems Devices (ASD) spectroradiometer.

Suppose these minerals are representative of the kind of
alteration and sufficiently present at the surface to allow sun
radiation to be reflected to the sensor. In that case, spectrora-
diometers hold the potential to be an invaluable supplemen-
tary data source for exploration geologists [18]. Potassic,
phyllic, argillaceous, and propylitic zones are frequently seen
in hydrothermally altered PCDs. These zones are shown to
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be coaxially oriented outward from a potassic core through
phyllic, argillic, and propylitic zones [19]. Deep learning is a
potent state-of-the-art method for analyzing images, particu-
larly remote sensing (RS) images [20]. The integration of
feature extraction and classifiers into learning frameworks
has enabled deep learning to surpass the challenges associat-
ed with feature selection in previous methods. The goal of
deep learning is to uncover multiple layers of representation,
with the expectation that high-level characteristics will re-
flect the data’s more abstract semantics. CNNs have been
widely used in image categorization [21].

The study project aimed to identify porphyry hydrother-
mal alteration zones in the Gilgit region. This study was mo-
tivated by the need to investigate regions that are frequently
inaccessible due to complex topography and severe weather
conditions. The Gilgit region, renowned for its complex geo-
logical features, presents significant challenges to mineral
exploration. Access to potential mineralization areas may be
hindered by severe topography and variable weather patterns,
making comprehensive geological investigations challenging.
Our study aimed to address these challenges by mapping and
analyzing hydrothermal alteration zones, which are character-
istic of porphyry-type mineral deposits, and to develop a
CNN model that classifies major minerals associated with
porphyry hydrothermal alteration zones in the Gilgit Region.

2. Methods

2.1. Satellite data

Landsat satellites are well-known for their optical data,
which is commonly used in geological mapping and other
applications. For over 40 years, they have continuously
monitored the Earth’s surface to meet varied information and
data requirements [22]. Data-acquiring platforms include
satellites [23], [24]. Landsat 8 was launched on February 11,
2013, equipped with two sensors: OLI and a thermal infrared
sensor, as shown in Figure 2.

Sensor  Spectral Band  Use Area Wavelength Resolution
oLl Band 1 Coastal/Aerosol 0.433 - 0.453 pm 30m
oLl Band 2 Blue 0.450 - 0.515 pm 30m
oLl Band 3 Green 0.525 - 0.600 pm 30m
oul Band 4 Red 0.630 - 0.680 pm 30m
oLl Band 5 Near Infrared 0.845 - 0.885 pm 30m
oLl Band 6 shortWavelengthiintrared i, ine W4 60/ im 30m
(SWIR 1)
oLl Band 7 Z’J&:_’\)Nave‘e”gth Infrared 5 400-2.300 pm 30m
oLl Band 8 Panchromatic 0.500 - 0.680 pm 15m
oLl Band 9 Cirrus 1.360 - 1.390 pm 30m
OLI Band 10 Long Wavelength Infrared 10.30 - 11.30 pm 100 m
oLl Band 11 Long Wavelength Infrared 11.50-12.50 um 100 m

Figure 2. Properties of Landsat 8 OLI (eos.com)

It provides images with the exact resolution as ETM+ in
11 spectral bands, including VNIR and SWIR bands 1-7, as
well as the panchromatic band 8. Band nine, which detects
cirrus clouds, has a spatial resolution of 30 meters. The last
two thermal bands (10 and 11) have a 100 m resolution. The
OLI bands’ spectral ranges aim to prevent atmospheric ab-
sorption inside the ETM+ bands [25]. ASTER is also a com-
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ponent of the EOS Terra platform, which captures solar
energy with 14 bands. The detection of ASTER reflected
radiation within three bands extending from 0.52-0.86 pm in
the VNIR, as well as the six bands for SWIR wavelengths
extending between 1.6 and 2.43 um, with resolution measured
at 15 and 30 meters, respectively, for the VNIR and the SWIR
range. In five TIR ASTER measurements, wavelengths have
been recorded within the range of 8.125-11.65. Each scene in
ASTER covers an area of 60 by 60 kilometers [26].

2.2. Convolutional neural network

Convolutional neural network is a type of neural network
used to extract feature from any pattern. It consists of convo-
lutional layers, pooling layer and fully connected layer. Spe-
cific parameters also include strike, padding, kernel size and
number of kernels used in convolutional layers and pooling
layers, as well as activation functions. These are some of
most essential parts of CNN when making CNN architecture.

One of the most critical networks in the field of deep learn-
ing is a convolutional neural network (CNN). In recent years
there has been considerable interest in CNNs from both indus-
try and academia due to its significant accomplishments in
various fields, such as computer vision and natural language
processing [27]. CNN’s architecture draws inspiration from the
principles of visual perception. An artificial neuron is equiva-
lent to a biological neuron; CNN kernels are several receptors
that can react to distinct features. Activation functions simulate
the function of neural electric signals that surpass a threshold,
allowing them to pass on to the next neuron [27].

To be more precise, four parts are typically necessary to
build a CNN model. Convolution is a vital stage in the feature
extraction process. Convolutional outputs are known as feature
maps. When setting a convolution kernel to a specific size, the
information about the border is lost. Padding is used to in-
crease the input with a zero value, hence indirectly changing
its size. Additionally, the stride is used to control the convolu-
tion density. The density reduces with increasing stride length.
After convolution, feature maps include a large number of
features, increasing the danger of overfitting. To avoid dupli-
cation, pooling (also known as down-sampling) is proposed,
which involves max pooling and average pooling [27].

Convolution, pooling, and fully connected layers are the
three main types of layers (or building pieces) that make up a
CNN in mathematics. The third layer, the fully connected
layer, translates the extracted features into the final output,
such as classification, while the first two layers, convolution
and pooling, perform feature extraction. A crucial component
of CNN is the convolution layer. CNN is composed of a
series of mathematical operations, including convolution, a
specific type of linear operation. Since a feature may exist in
a digital image, CNNs are very effective for processing im-
ages because pixel values are kept in a two-dimensional (2D)
grid, or an array of integers, and a small grid of parameters,
called a kernel, an optimizable feature extractor, is applied to
each image point anywhere in the picture. Complexity of
retrieved characteristics can grow hierarchically and progres-
sively, as one layer passes its output data to the next layer.
Training is the process of fine-tuning parameters, such as
kernels, using optimization algorithms like gradient descent
and backpropagation, among others, to minimize the differ-
ence between outputs and ground truth labels [28]. The out-
put feature maps of a convolutional neural network (CNN)
are usually flattened into a one-dimensional (1D) vector,
following the last convolution or pooling layer.
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2.3. Study area

Gilgit-Baltistan, as shown in Figure 3, is the northern-
most region of Pakistan. Islamabad, the capital of Pakistan, is
primarily accessed through the Karakoram Highway, also
known as the KKH. Geographically, this region is surroun-
ded by Afghanistan to the northwest, China to the northeast,
and Khyber Pakhtunkhwa to the southwest. This region is
home to many towering mountains, with a few of them ex-
ceeding 8000 meters in height. Gilgit is also the administra-
tive capital of Gilgit-Baltistan. The Gilgit region covers an
area of about 16. housand km? [29].

Study Area: Gilgit Region

Figure 3. Study area map

The Gilgit area is primarily made up of river plain deposits.
It is surrounded mainly by volcanic and Kohistan batholith
rocks in the north, northeast, and northwest, while the Gilgit
Complex meta-sedimentary rocks cover the southern, south-
eastern, and southwestern regions. The volcanic rocks are
predominantly basaltic andesites, rhyolites, and pyroclastic
flows. The Kohistan batholith is made up of several diorites,
granodiorites, and granites [30].

2.4. Hydrothermal alteration zones

Hydrothermal alteration zones are areas where rocks have
undergone chemical changes as a result of their interaction
with hot, mineral-rich fluids. These modifications often occur
in volcanic and tectonically active places, resulting in the
creation of a variety of secondary minerals. These zones in
Gilgit-Baltistan are notable for their association with valuable
mineral reserves, primarily gold and base metals. Mineraliza-
tion in hydrothermal alteration zones is visible in Figure 4.
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Figure 4. General mineralization of the hydrothermal alteration zone
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In Gilgit-Baltistan, the principal minerals associated with
hydrothermal alteration zones are chalcopyrite, a significant
copper mineral found in sulfide deposits.

Pyrite, also known as “fool’s gold” is frequently found in
gold deposits and serves as an essential indicator of minerali-
zation. Malachite and azurite are copper carbonate minerals
that commonly form as secondary products in oxidized envi-
ronments. Sericite, chlorite, and epidote are alteration products
that indicate hydrothermal activity. They frequently result
from the modification of feldspar and other silicate minerals.

The geological background of these changes is principal-
ly defined by volcanic rock formations, such as those found
in the Chalt Volcanic Group and Shamaran volcanics, both
of which are parts of the Kohistan Island Arc. The interaction
of hydrothermal fluids with these rocks causes significant
changes in their mineral composition, resulting in zones rich
in economically valuable minerals, such as gold and copper.

2.5. Remote sensing methodology

The use of Landsat data to identify porphyry hydrother-
mal alteration zones is a complex procedure that requires
several phases to achieve precise mineral detection. In this
investigation, Landsat Collection 2 Level 1 imagery from
Landsat 8, acquired by the USGS, was obtained on July 19,
2024. The data was processed using ENVI 5.3 software.
Initially, the data was radiometrically calibrated to transform
raw digital numbers into radiance values. This step is critical
because it prepares the data for future atmospheric correc-
tions. Following calibration, the FLAASH Atmospheric
Correction method is employed to efficiently mitigate at-
mospheric interference, thereby enhancing the clarity of the
spectral data. After minimizing the atmospheric impacts, the
Math Band Expression was applied to normalize the data,
thereby limiting the pixel values to a range of 0 to 1. This
normalization is required for the comparative study and in-
terpretation of spectral data.

To reliably identify the minerals associated with porphyry
hydrothermal alteration zones, a spectral library was created
using ENVTI’s built-in mineral spectral library, which comprises
the spectral signatures of numerous minerals commonly ob-
served in alteration zones. The developed spectral library
matches the spectral signatures obtained from the image data
and classifies minerals. The final step was the use of Spectral
Angle Mapping (SAM) classification. This technique compares
the spectral signatures of minerals in the spectral library to
those found in Landsat imagery. Calculating the spectral angle
allows us to properly detect and map the distribution of hydro-
thermal alteration minerals throughout the study area. Figure 5
explains the remote sensing methodology in a sequence.

Every mineral has a unique characteristic of its spectral
range, which also differentiates it from other minerals. A
spectrometer can measure the spectral range of minerals, and
different minerals display distinct graphs with varying spec-
tral ranges, as shown in Figure 6a-c. These graphs, given
above, tell us about the spectral signatures of minerals
formed in Hydrothermal Alteration Zones. Every mineral has
a unique spectral signature.

2.6. Preprocessing of imagery satellite data through CNN

Using 13 distinct mineral labels, each associated with a
specific color, a set of satellite images was analyzed in this
study. To facilitate identification, the following minerals were
color-coded: feldspar (magenta), chalcocite (lime green), py-
rite (olive green), calcite (green), and epidote (blue).
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While the color coding functioned well in GIS and ENVI
software, applying it with programming tools posed chal-
lenges. Malachite, serpentine, and chlorite were among the
minerals difficult to identify accurately. This may be the
result of program limitations, inconsistent color representa-
tion, or low-quality data. Our approach to addressing these
challenges was targeted, and we chose two minerals: Chalco-
cite, which is relevant to copper, and Feldspar, which is rela-
tively less common. Before extending the classification to all
13 minerals, this strategic choice enabled us to overcome the
initial obstacles and enhance the model performance.

The dataset was preprocessed by segmenting the origi-
nal satellite images, as shown in Figure 6, into 216 patches,
each with dimensions of 302x302 pixels, as illustrated in
Figure 7. Several augmentation techniques, including image
rotation and flipping, were applied, resulting in approxi-
mately 4300 images. To improve data quality, this number
was reduced to 3032 images. Background removal was a
critical preprocessing step to eliminate high-intensity areas
that hindered mineral feature extraction, particularly for
Feldspar and Chalcocite.

Figure 7. Pacifying image

The dataset was structured into three sets: training, vali-
dation, and testing, with a split of 70, 15 and 15%, respec-
tively. Each set contained an equal number of images for
Feldspar and Chalcocite. This organized dataset arrangement
ensured the practical training of machine learning models,
where the validation set was used for hyperparameter tuning,
and the test set assessed the model generalization capability.
By employing a systematic approach to data preparation and
augmentation, we aimed to enhance the classification accura-
cy and robustness of the model for the selected minerals.
Figures 8 and 9 illustrate the overall preprocessing stages
through programming.

The flowchart in Figure 9 shows the preprocessing steps
involved in CNN training. Imagery data from GIS and Envi
is prepared through programming and then further processed
through steps such as patching, which divides large images
into smaller parts; data augmentation, which increases the
dataset by transformation; extracting relevant features; nor-
malization; and data splitting and organization. The reason
behind the preprocessing steps is to clean and prepare the
imagery data for the CNN model.
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Figure 9. Preprocessing through programming

2.7. Convolutional neural network model

To categorize mineral images, this study developed a Con-
volutional Neural Network (CNN) with a focus on feldspar and
chalcocite. A 150x150 feature map is produced by the CNN’s
Conv2D layer, which uses 32 filters of size 3%3 to extract fun-
damental characteristics, such as edges. To save computational
costs and preserve essential characteristics, a MaxPooling2D
layer is used to shrink the spatial dimensions to 75%75. Next,
the network adds additional Conv2D layers, gradually reducing
the feature map to 8x8 and increasing the filter count to 128.
As the network becomes deeper, these layers can collect pro-
gressively more complex characteristics. Based on the likeli-
hood of the affirmative class, the architecture’s last dense layer
produces a binary classification, as shown in Figure 10.

The train generator’s batches were used to train the model
using a fit function, and the validation data was used to as-
sess the model performance. The model performed well in
categorizing unknown data, with a test accuracy of 95.09%
after 10 epochs of training. The trained model was also used
to categorize fresh photos. After being scaled, normalized,
and run through the model, the images were effectively clas-
sified as either Feldspar or Chalcocite, depending on a thresh-
old value. The visualization model is shown in Figure 11.

Figure 11 shows the architecture and parameters used for
image classification in the CNN model. The model includes
several convolutional and pooling layers that smoothly ex-
tract the spatial features in the imagery data. In the second
layer, the output is flattened and passes through a dense lay-
er, which learns the complex patterns and relationships with-
in the imagery data. To prevent model overfitting, a dropout
layer is added, which also aids in model generalization. In
short, the model contains 4.37 million trainable parameters,
reflecting its depth of capability to correctly analyze and
classify imagery data as required in this study.
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mal alteration zones in the Gilgit and surrounding areas, as
shown in Figure 12b-c.

In both the training and validation sets, the model initially
showed promising results with modest accuracy and losses
throughout the learning process. Accuracy increased gradually
as training progressed, but overfitting began to emerge, with
the model performing significantly better on the training data
than on the validation data. Despite this, the model continued
to improve, eventually achieving very high accuracy and min-
imal loss on both sets, particularly in the later epochs. Alt-
hough the model achieved 100% accuracy on the training set,
its performance on the validation set marginally decreased,
indicating some difficulty in generalizing new data.

The output illustrates the comparison between training
and validation accuracy, as well as the changes in training
and validation loss during training, as shown in Table 1.

Table 1. Model accuracy & loss

Figure 10. Architecture of CNN

Model: "sequential_8"

Layer (type) Output Shape
(None, 158, 158, 32)

Total params:
Trainable params:
Non-trainable params:

(16.39 1B)
(16.39 MB)
(060 B)

Figure 11. CNN model

3. Results and discussion

The production of minerals within hydrothermal altera-
tion zones is widely documented in geological literature.
When mineral-rich fluids contact host rocks, they undergo
hydrothermal alteration, resulting in significant changes in
mineralogical composition. A variety of elements influence
this process, including the temperature, pressure, and chemi-
cal composition of the hydrothermal fluids, as well as the
type of host rocks. In this investigation, Spectral Angle Map-
ping (SAM) classification was performed to identify miner-
als associated with porphyry and other hydrothermal altera-
tion zones. QGIS was used to produce these Hymaps. This
classification technique detects the presence of minerals in
remote sensing data by using their spectral signature. Mine-
rals of porphyry hydrothermal alteration zones were identi-
fied using the SAM classification, including epidote, calcite,
and chlorite, as shown in Figure 12a.

Minerals formed in porphyry hydrothermal alteration
zones are classified based on spectral signatures. In addition
to discovering porphyry hydrothermal alteration zones, our
investigation indicated the presence of additional hydrother-
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Epoch Training Training  Validation  Validation

accuracy, % loss accuracy loss, %
1 49.34 0.7728 76.82 46.81
2 71.88 0.4562 73.33 37.23
3 86.00 0.3805 93.75 17.12
4 96.88 0.1742 86.67 23.22
5 90.48 0.2524 95.57 11.34
6 93.75 0.2267 93.33 17.86
7 95.47 0.1365 89.32 33.19
8 100.00 0.0356 73.33 40.59
9 95.09 0.1473 94.27 16.04
10 96.88 0.046 93.33 541

The validation accuracy and loss fluctuate initially, indi-
cating that the model is adapting to the data and that there
may be occasional instances of overfitting or underfitting.
The model attempts to generalize from training data to vali-
dation data, so this volatility is typical of early epochs. How-
ever, the model performance was enhanced by changing a
few crucial parameters, including the learning rate, the drop-
out rate, and the number of convolutional layers. To avoid
overfitting or underfitting and maintain a balance in learning,
these parameters are essential. By arbitrarily turning off
neurons during training, dropout enhances generalization by
preventing the model from remembering the training set.
Adjusting the learning rate enables the model to learn at a
speed that prevents overshooting ideal values or learning too
slowly, and adding more convolutional layers improves the
model capacity to extract more complex features from the
input data. As a result, the validation accuracy initially in-
creased and occasionally surpassed the training accuracy.
This phenomenon, in which the model performs momentarily
better on previously unseen data, may be attributed to the
regularization effect of dropout and learning rate adjust-
ments. However, as the epochs progress, the validation accu-
racy fluctuates and initially tends to decline before gradually
catching up to the training accuracy. Both accuracies eventu-
ally stabilize and improve.

The validation loss exhibits a similar pattern, initially
rising, which suggests that the model has difficulty in gene-
ralizing. However, as the model gains more experience, the
loss decreases, indicating improved results of both the trai-
ning and validation sets. Both training and validation loss
decline gradually over time, indicating that the model is
learning efficiently and avoiding overfitting.
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Figure 12. Hymaps of porphyry hydrothermal alteration zones: (a) porphyry hydrothermal alteration zones; (b) peripheral hydrothermal
alteration zones; (c) potassic and phyllic alteration zones; (d) propylitic hydrothermal alteration zones

In summary, the adjustments made to the model architec-
ture and learning parameters enabled it to overcome initial
fluctuations and fit well to both the training and validation
data, as shown in Figure 13. The steady alignment of valida-
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tion accuracy with training accuracy, and the decrease in
loss, suggest that the model effectively learned from the data
and established a balance between learning from the training
data and generalizing to unseen validation data.
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Figure 13. Comparison of model performance metrics: (a) training
and validation accuracy; (b) training and validation loss

With a low test loss of 0.0936 and a high test accuracy of
95.09%, the model demonstrated exemplary performance and
minimal prediction error. Table 2 highlights the model accu-
racy percentage and loss.

Table 2. Model accuracy & loss

Dataset Accuracy (%) Loss (%)
Training 96 0.967
Validation 93.33 0.152
Test 92.87 0.2595

It efficiently categorizes minerals by examining the pix-
el proportions of a scaled and normalized TIFF image,
using the unique RGB values of Feldspar (magenta) and
Chalcocite (green) as shown in Figure 14. The method
computes percentages, shows the results, and compares
pixels to the preset RGB values. Geographical software,
such as ENVI or GIS, is then used to map the distribution
of minerals and extract geographic information, as shown
in Figure 15. To facilitate mining, resource management,
and environmental protection applications, this method
helps pinpoint the exact locations of minerals.

The classification of minerals based on color pixels is
shown in Figure 14. The green areas in the figure indicate
chalcopyrite, and the pink areas show feldspar. The reason for
using color-based classification in this study is to identify and
separate different minerals in the imagery data, which in turn
helps in understanding their distribution within the study area.
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Figure 14. Classification based on
5.27%; feldspar — 2.72%)

color pixels (chalcocite —

Figure 15. Extracted coordinates through ENVI

The coordinates of the imagery data are extracted using
ENVI software, as shown in Figure 15. These coordinates
mark the exact locations in the study area, which will help
with real-world ground positions in the future. This was
important, as it gives confidence in the accuracy and preci-
sion required for model development.

4. Conclusions

Spectral Angle Mapping classification was used to identi-
fy the minerals formed in porphyry hydrothermal alteration
zones. A spectral library was prepared to identify the mine-
rals formed in porphyry hydrothermal alteration zones. The
Spectral Angle Mapping classification algorithm was run,
which matches the spectral signatures found in the satellite
imagery with those provided in the spectral library. Identified
minerals include Chlorite, Chalcocite, Pyrite, Epidote, Mala-
chite, Calcite, Alunite, Magnetite, Biotite, Serpentine, Dolo-
mite and Feldspar. On the other hand, a Convolutional Neu-
ral Network model was developed to classify minerals based
on the pixel values of their colors. Using satellite images as a
guide, we successfully created and deployed a Convolutional
Neural Network (CNN) model to categorize minerals, with a
focus on Chalcocite and Feldspar due to their distinctive
color patterns. Chalcocite (“#00FE00”) and Feldspar
(“4#FEOOFE”) are the two distinct color codes assigned to
each mineral, which allowed the model to distinguish be-
tween them with great accuracy. These color codes were
used in the categorization procedure.

We increased the size of our dataset to 3000 images by
using image augmentation techniques, which guarantees a
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stable and varied dataset for testing, validation, and training.
The training (70%), validation (15%), and testing (15%) sets
of data enabled efficient assessment of the model perfor-
mance. To determine whether a picture represented Feldspar
or Chalcocite, the CNN architecture used consisted of multi-
ple Conv2D and MaxPooling2D layers, followed by a fully
connected Dense layer with a binary classification output.
The developed model achieves training accuracy and loss of
96% and 0.967%, respectively, with a validation accuracy of
93.33% and a validation loss of 0.152%. Moreover, the test
accuracy is 92.87%, and the test loss is 0.2595%.
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IlepenoBi TexHoJorii AucTaHNiliHOrO 30HAYBaHHs Ha ocHOBI CNN 17111 CTBOpeHH
KapT MiHepaJabHUX pecypciB nopgipoBux cucrem y perioni I'isrirt

M. Mym3apin, @. bi6i, C. Ixcan, K.C. Illax, M.3. Emag

Merta. Brockonanenss ineHTHgikamii MiHepaniB y 30Hax nopdipoBoi rigpoTepMaibHOi anbTepanii, 0COOIMBO Y CKIaTHOMY TipCHKOMY
penbedi paiiony ['iarit, DUsIXoM iHTerparii JaHUX AUCTAHIIIHOTO 30HyBaHHI 31 3rOPTKOBUMU HelipoHHHMHE Mepexkamu (CNN).

Metoauka. Buxopucrano cymytaukoBi 3HiMKH Landsat 8 Collection 2 Level 1, orpumani 3 6a3u United States Geological Survey
(USGS). Ix o6po6aeno y nporpamuomy 3abesneuenni ENVI 5.3 i3 3acTocyBanHsaM MeTofy knacudikanii Spectral Angle Mapping (SAM)
JUIsL BUSIBIICHHS 30H MiHepabHuX 3MiH. HaGip qanux Oyno po3LIMpeHo NUIIXOM ayTrMeHTalii, HOpMalli30BaHO Ta PO3MOALTICHO Ha HABYAJIbHY
(75%), Bamigauiiiny (15%) i TectoBy (15%) Bubipku. CtBopeHo mozenb CNN, sika BKIIFOUAa€ 3rOPTKOBI, IMyJIIHTOBI Ta MOBHO3B’S3HI IIapH
It 6iHapHOI KiTacudikamii MiHEpaJTbHUX CKIAMIB.

PesyasTaTn. [JoBeneno, mo nepenoBi CNN-MeToan AUCTaHIIHHOTO 30HIYBaHHS JIEMOHCTPYIOTH BHCOKY €(eKTHBHICTH y KapTyBaHHI
MiHepaliB opdipoBux cucteM. BecTaHOBICHO, IO po3po0iIeHa MOIENIh HEHPOHHOT MEPEKi ToCATIIa TOYHOCTI HaBYaHHs MoHaa 96% Ta Bai-
nanii 93.3% i TakuX MiHEepayiB SIK TOJILOBHH IINAT 1 XaJIBKOIMT, 3aBISIKH 1X CIIEKTPaJIbHUM XapaKTEePHUCTHKAM i JOMIHAHTHUM KOJBOPO-
BUM O3HaKaM. Bu3HaueHo, 1110 3armpoIOHOBaHM MiJXiJ BUSBUBCS OCOOJIMBO KOPHCHUM y Ba)KKOJOCTYIIHHX TiPCHKHX perioHax, 30Kpema B
paiioni ['inrit, ne TpaaMIiiiHi METOIU € CKJIaTHAMU Ta 3aTPATHUMH.

HaykoBa HoBH3HA. YTepiie NpOAEMOHCTPOBAHO YCIIMIHY 1HTETPAIil0 JaHUX AMCTAHIIIHOTO 30HAYBAaHHS 3 alTOPUTMAaMU Ha OCHOBI
CNN a5t TouHOI Kacudikamii MiHepaliB y 30HaX mopQipoBoi ajabpTepartii, o JO3BOJISLE MOJ0JIATH OOMEXKECHHS OJIbOBUX METOIB Y CKIa-
HHUX HPUPOJHUX YMOBAX.

IIpakTruna 3naunMicTb. Po3pobennit miaxin 3abesneuye eekTHBHUN IHCTPYMEHT JUIsl AUCTAHIIIHHOI PO3BIAKN MiHEpAIBHUX pPecyp-
CiB Y BOKKOJOCTYITHHUX PalilOHAaX, CIIPHUSAIOYH MiIBUIIICHHIO TOYHOCTI Ta IBUAKOCTI T€OJOTIYHHX OIIIHOK y MeKax paiony ['iriT.

Knruosi cnosa: 30nu nopgiposoi ciopomepmanvroi anvmepayii, ENVI, 32copmkoea neliponna mepedica, Oucmarnyiiine 30HOV8AHHSA, HOP-
Manizayis, ayemeHmayis 0aHux, Kiacugixayis
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