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Abstract 

Purpose. This study aims to improve mineral identification in porphyry hydrothermal alteration zones, particularly in the 

challenging terrain of the Gilgit area, by combining remote sensing data with Convolutional Neural Networks (CNNs). 

Methods. Landsat 8 Collection 2 Level 1 imagery from the United States Geological Survey (USGS) was processed using 

ENVI 5.3 software. Spectral Angle Mapping (SAM) classification was applied to identify alteration minerals. The dataset was 

then augmented, normalized, and split into training (75%), validation (15%), and testing (15%) sets. A CNN model incorporating 

convolutional, pooling, and fully connected layers was developed to perform binary classification of mineral compositions. 

Findings. Advanced CNN-based remote sensing techniques have demonstrated significant potential in mapping porphyry 

systems. The CNN model achieved over 90% classification accuracy for minerals like feldspar and chalcocite, based on their 

spectral properties and dominant color features.  This approach is beneficial in challenging terrains like Gilgit, where traditio-

nal methods can be difficult and expensive. 

Originality. This study demonstrates the successful integration of remote sensing data with CNN-based algorithms for  

accurate mineral classification, providing a novel approach to overcoming the limitations of conventional field-based methods 

in challenging terrains. 

Practical implications. The approach provides a practical and efficient solution for remote mineral exploration, particular-

ly in regions with limited accessibility, supporting more accurate and faster geological assessments in the Gilgit area. 

Keywords: porphyry hydrothermal alteration zones, ENVI, convolutional neural network, remote sensing, normalization, 

data augmentation, classification 

 

1. Introduction 

Remote sensing has provided tools for geological explo-

ration for almost four decades. Nowadays, many satellite 

remote sensing datasets are accessible freely and can be 

extensively used for mineral exploration projects [1]. Geo-

logical maps help provide and investigate the locations of 

geological features associated with target mineralization, 

which is one of the most basic procedures in mineral explora-

tion. These maps may contain features such as the lithologi-

cal units, alteration types, structures, and indicator mine-

rals [2]. Geological mapping technologies have evolved, and 

today, the combination of remote sensing data and modern 

data analytics, such as machine learning, is attracting signifi-

cant interest [3]. This combination enables geologists to 

address the typical challenges associated with traditional 

methods, as illustrated in Figure 1 below. 

In many environments where standard field surveys are 

complex and time-consuming, the application of remote 

sensing methods can distinguish mineralization based on 

associated lithological, structural, and hydrothermal change 

types [4]-[7]. These strategies are used in mineral exploration 

to identify structural features that may indicate controlled 

mineralization [8]. Remote sensing can effectively identify 

hydrothermal alteration zones due to changes in PCDs 

(porphyry copper deposits) caused by fluid expansion [9]. 

Remote sensing is frequently utilized for lithological and 

structural mapping, as well as mineral prospecting, which 

significantly reduces the expense of field research [10]. Map-

ping surface-altered rocks and their associated mineralization 

using satellite remote sensing photography is a valuable asset 

in any geological and mineral exploration operation [11]. 

Several studies have demonstrated the reliability of mul-

tispectral and hyperspectral remote sensing data processing 

in identifying hydrothermal alteration zones [12]. Scientists 

have been able to propose novel and efficient methods for 

data processing due to the extraordinary increase in the di-

versity of remote sensing data collected from various plat-

forms and ground measurements [13]. 
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Figure 1. Integration of remote sensing & machine learning [14] 

 

Over the past few decades, numerous image processing 

techniques have been developed to aid in the identification, 

differentiation, and enhancement of features such as lithologi-

cal units, alteration zones, and structures using remote sens-

ing data [14]. The Enhanced Thematic Mapper Plus (ETM+), 

Operational Land Imager (OLI), Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), and 

Hyperion are among the most recent multispectral and hyper-

spectral remote sensing instruments that have expanded the 

use of satellite imagery for mapping geological features [15]. 

The study of multispectral images is crucial for the explora-

tion and identification of hydrothermally altered areas [16]. 

Remote sensing (ASTER) images with suitable spectral and 

spatial resolutions are utilized to identify hydrothermal alte-

ration and structures effectively [17]. 

Economic mineralization is often formed through liquid 

processes, which significantly impact the mineralogy and 

chemistry of the host rock. This alteration can result in  

various mineral assemblages that differ depending on the 

location, intensity, and duration of the flow events. When 

exposed at the Earth’s surface, this alteration can be traced 

occasionally in a zonal pattern, in the simplest instance, con-

centrically, around a core of highest-grade alteration and 

most economic significance [18]. Mapping alteration zones 

may benefit from the knowledge that remote sensing offers on 

the surface characteristics of exploration sites. Iron-rich and 

iron-poor lithologies are two examples of the different types of 

rocks that can be distinguished using broadband sensors, such 

as the Landsat Thematic Mapper (TM) and the SPOT (Satellite 

pour l’Observation de la Terre). Spectral absorptions in the 

visible to shortwave infrared specific to certain individual 

minerals can be detected using narrowband field devices like 

the Analytical Systems Devices (ASD) spectroradiometer. 

Suppose these minerals are representative of the kind of 

alteration and sufficiently present at the surface to allow sun 

radiation to be reflected to the sensor. In that case, spectrora-

diometers hold the potential to be an invaluable supplemen-

tary data source for exploration geologists [18]. Potassic, 

phyllic, argillaceous, and propylitic zones are frequently seen 

in hydrothermally altered PCDs. These zones are shown to 

be coaxially oriented outward from a potassic core through 

phyllic, argillic, and propylitic zones [19]. Deep learning is a 

potent state-of-the-art method for analyzing images, particu-

larly remote sensing (RS) images [20]. The integration of 

feature extraction and classifiers into learning frameworks 

has enabled deep learning to surpass the challenges associat-

ed with feature selection in previous methods. The goal of 

deep learning is to uncover multiple layers of representation, 

with the expectation that high-level characteristics will re-

flect the data’s more abstract semantics. CNNs have been 

widely used in image categorization [21]. 

The study project aimed to identify porphyry hydrother-

mal alteration zones in the Gilgit region. This study was mo-

tivated by the need to investigate regions that are frequently 

inaccessible due to complex topography and severe weather 

conditions. The Gilgit region, renowned for its complex geo-

logical features, presents significant challenges to mineral 

exploration. Access to potential mineralization areas may be 

hindered by severe topography and variable weather patterns, 

making comprehensive geological investigations challenging. 

Our study aimed to address these challenges by mapping and 

analyzing hydrothermal alteration zones, which are character-

istic of porphyry-type mineral deposits, and to develop a 

CNN model that classifies major minerals associated with 

porphyry hydrothermal alteration zones in the Gilgit Region. 

2. Methods 

2.1. Satellite data 

Landsat satellites are well-known for their optical data, 

which is commonly used in geological mapping and other 

applications. For over 40 years, they have continuously  

monitored the Earth’s surface to meet varied information and 

data requirements [22]. Data-acquiring platforms include 

satellites [23], [24]. Landsat 8 was launched on February 11, 

2013, equipped with two sensors: OLI and a thermal infrared 

sensor, as shown in Figure 2. 

 

 

Figure 2. Properties of Landsat 8 OLI (eos.com) 

 

It provides images with the exact resolution as ETM+ in 

11 spectral bands, including VNIR and SWIR bands 1-7, as 

well as the panchromatic band 8. Band nine, which detects 

cirrus clouds, has a spatial resolution of 30 meters. The last 

two thermal bands (10 and 11) have a 100 m resolution. The 

OLI bands’ spectral ranges aim to prevent atmospheric ab-

sorption inside the ETM+ bands [25]. ASTER is also a com-
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ponent of the EOS Terra platform, which captures solar  

energy with 14 bands. The detection of ASTER reflected 

radiation within three bands extending from 0.52-0.86 μm in 

the VNIR, as well as the six bands for SWIR wavelengths 

extending between 1.6 and 2.43 μm, with resolution measured 

at 15 and 30 meters, respectively, for the VNIR and the SWIR 

range. In five TIR ASTER measurements, wavelengths have 

been recorded within the range of 8.125-11.65. Each scene in 

ASTER covers an area of 60 by 60 kilometers [26]. 

2.2. Convolutional neural network 

Convolutional neural network is a type of neural network 
used to extract feature from any pattern. It consists of convo-
lutional layers, pooling layer and fully connected layer. Spe-
cific parameters also include strike, padding, kernel size and 
number of kernels used in convolutional layers and pooling 
layers, as well as activation functions. These are some of 
most essential parts of CNN when making CNN architecture. 

One of the most critical networks in the field of deep learn-
ing is a convolutional neural network (CNN). In recent years 
there has been considerable interest in CNNs from both indus-
try and academia due to its significant accomplishments in 
various fields, such as computer vision and natural language 
processing [27]. CNN’s architecture draws inspiration from the 
principles of visual perception. An artificial neuron is equiva-
lent to a biological neuron; CNN kernels are several receptors 
that can react to distinct features. Activation functions simulate 
the function of neural electric signals that surpass a threshold, 
allowing them to pass on to the next neuron [27]. 

To be more precise, four parts are typically necessary to 
build a CNN model. Convolution is a vital stage in the feature 
extraction process. Convolutional outputs are known as feature 
maps. When setting a convolution kernel to a specific size, the 
information about the border is lost. Padding is used to in-
crease the input with a zero value, hence indirectly changing 
its size. Additionally, the stride is used to control the convolu-
tion density. The density reduces with increasing stride length. 
After convolution, feature maps include a large number of 
features, increasing the danger of overfitting. To avoid dupli-
cation, pooling (also known as down-sampling) is proposed, 
which involves max pooling and average pooling [27]. 

Convolution, pooling, and fully connected layers are the 
three main types of layers (or building pieces) that make up a 
CNN in mathematics. The third layer, the fully connected 
layer, translates the extracted features into the final output, 
such as classification, while the first two layers, convolution 
and pooling, perform feature extraction. A crucial component 
of CNN is the convolution layer. CNN is composed of a 
series of mathematical operations, including convolution, a 
specific type of linear operation. Since a feature may exist in 
a digital image, CNNs are very effective for processing im-
ages because pixel values are kept in a two-dimensional (2D) 
grid, or an array of integers, and a small grid of parameters, 
called a kernel, an optimizable feature extractor, is applied to 
each image point anywhere in the picture. Complexity of 
retrieved characteristics can grow hierarchically and progres-
sively, as one layer passes its output data to the next layer. 
Training is the process of fine-tuning parameters, such as 
kernels, using optimization algorithms like gradient descent 
and backpropagation, among others, to minimize the differ-
ence between outputs and ground truth labels [28]. The out-
put feature maps of a convolutional neural network (CNN) 
are usually flattened into a one-dimensional (1D) vector, 
following the last convolution or pooling layer. 

2.3. Study area 

Gilgit-Baltistan, as shown in Figure 3, is the northern-
most region of Pakistan. Islamabad, the capital of Pakistan, is 
primarily accessed through the Karakoram Highway, also 
known as the KKH. Geographically, this region is surroun-
ded by Afghanistan to the northwest, China to the northeast, 
and Khyber Pakhtunkhwa to the southwest. This region is 
home to many towering mountains, with a few of them ex-
ceeding 8000 meters in height. Gilgit is also the administra-
tive capital of Gilgit-Baltistan. The Gilgit region covers an 
area of about 16. housand km2 [29]. 

 

 
Figure 3. Study area map 

 
The Gilgit area is primarily made up of river plain deposits. 

It is surrounded mainly by volcanic and Kohistan batholith 
rocks in the north, northeast, and northwest, while the Gilgit 
Complex meta-sedimentary rocks cover the southern, south-
eastern, and southwestern regions. The volcanic rocks are 
predominantly basaltic andesites, rhyolites, and pyroclastic 
flows. The Kohistan batholith is made up of several diorites, 
granodiorites, and granites [30]. 

2.4. Hydrothermal alteration zones 

Hydrothermal alteration zones are areas where rocks have 
undergone chemical changes as a result of their interaction 
with hot, mineral-rich fluids. These modifications often occur 
in volcanic and tectonically active places, resulting in the 
creation of a variety of secondary minerals. These zones in 
Gilgit-Baltistan are notable for their association with valuable 
mineral reserves, primarily gold and base metals. Mineraliza-
tion in hydrothermal alteration zones is visible in Figure 4. 

 

 
Figure 4. General mineralization of the hydrothermal alteration zone 
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In Gilgit-Baltistan, the principal minerals associated with 
hydrothermal alteration zones are chalcopyrite, a significant 
copper mineral found in sulfide deposits. 

Pyrite, also known as “fool’s gold” is frequently found in 
gold deposits and serves as an essential indicator of minerali-
zation. Malachite and azurite are copper carbonate minerals 
that commonly form as secondary products in oxidized envi-
ronments. Sericite, chlorite, and epidote are alteration products 
that indicate hydrothermal activity. They frequently result 
from the modification of feldspar and other silicate minerals. 

The geological background of these changes is principal-
ly defined by volcanic rock formations, such as those found 
in the Chalt Volcanic Group and Shamaran volcanics, both 
of which are parts of the Kohistan Island Arc. The interaction 
of hydrothermal fluids with these rocks causes significant 
changes in their mineral composition, resulting in zones rich 
in economically valuable minerals, such as gold and copper. 

2.5. Remote sensing methodology 

The use of Landsat data to identify porphyry hydrother-
mal alteration zones is a complex procedure that requires 
several phases to achieve precise mineral detection. In this 
investigation, Landsat Collection 2 Level 1 imagery from 
Landsat 8, acquired by the USGS, was obtained on July 19, 
2024. The data was processed using ENVI 5.3 software. 
Initially, the data was radiometrically calibrated to transform 
raw digital numbers into radiance values. This step is critical 
because it prepares the data for future atmospheric correc-
tions. Following calibration, the FLAASH Atmospheric 
Correction method is employed to efficiently mitigate at-
mospheric interference, thereby enhancing the clarity of the 
spectral data. After minimizing the atmospheric impacts, the 
Math Band Expression was applied to normalize the data, 
thereby limiting the pixel values to a range of 0 to 1. This 
normalization is required for the comparative study and in-
terpretation of spectral data. 

To reliably identify the minerals associated with porphyry 
hydrothermal alteration zones, a spectral library was created 
using ENVI’s built-in mineral spectral library, which comprises 
the spectral signatures of numerous minerals commonly ob-
served in alteration zones. The developed spectral library 
matches the spectral signatures obtained from the image data 
and classifies minerals. The final step was the use of Spectral 
Angle Mapping (SAM) classification. This technique compares 
the spectral signatures of minerals in the spectral library to 
those found in Landsat imagery. Calculating the spectral angle 
allows us to properly detect and map the distribution of hydro-
thermal alteration minerals throughout the study area. Figure 5 
explains the remote sensing methodology in a sequence. 

Every mineral has a unique characteristic of its spectral 
range, which also differentiates it from other minerals. A 
spectrometer can measure the spectral range of minerals, and 
different minerals display distinct graphs with varying spec-
tral ranges, as shown in Figure 6a-c. These graphs, given 
above, tell us about the spectral signatures of minerals 
formed in Hydrothermal Alteration Zones. Every mineral has 
a unique spectral signature. 

2.6. Preprocessing of imagery satellite data through CNN 

Using 13 distinct mineral labels, each associated with a 
specific color, a set of satellite images was analyzed in this 
study. To facilitate identification, the following minerals were 
color-coded: feldspar (magenta), chalcocite (lime green), py-
rite (olive green), calcite (green), and epidote (blue).  

 

Figure 5. Flowchart of the remote sensing methodology 

 

(a) 

 

(b) 

 

(c) 

 

Figure 6. Spectral range of minerals in different hydrothermal 

alteration zones: (a) peripheral hydrothermal alteration 

zone; (b) potassic and phyllic hydrothermal alteration 

zone; (c) propylitic hydrothermal alteration zone 
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While the color coding functioned well in GIS and ENVI 

software, applying it with programming tools posed chal-

lenges. Malachite, serpentine, and chlorite were among the 

minerals difficult to identify accurately. This may be the 

result of program limitations, inconsistent color representa-

tion, or low-quality data. Our approach to addressing these 

challenges was targeted, and we chose two minerals: Chalco-

cite, which is relevant to copper, and Feldspar, which is rela-

tively less common. Before extending the classification to all 

13 minerals, this strategic choice enabled us to overcome the 

initial obstacles and enhance the model performance. 

The dataset was preprocessed by segmenting the origi-

nal satellite images, as shown in Figure 6, into 216 patches, 

each with dimensions of 302×302 pixels, as illustrated in 

Figure 7. Several augmentation techniques, including image 

rotation and flipping, were applied, resulting in approxi-

mately 4300 images. To improve data quality, this number 

was reduced to 3032 images. Background removal was a 

critical preprocessing step to eliminate high-intensity areas 

that hindered mineral feature extraction, particularly for 

Feldspar and Chalcocite. 

 

 

Figure 7. Pacifying image 

 

The dataset was structured into three sets: training, vali-

dation, and testing, with a split of 70, 15 and 15%, respec-

tively. Each set contained an equal number of images for 

Feldspar and Chalcocite. This organized dataset arrangement 

ensured the practical training of machine learning models, 

where the validation set was used for hyperparameter tuning, 

and the test set assessed the model generalization capability. 

By employing a systematic approach to data preparation and 

augmentation, we aimed to enhance the classification accura-

cy and robustness of the model for the selected minerals. 

Figures 8 and 9 illustrate the overall preprocessing stages 

through programming. 

The flowchart in Figure 9 shows the preprocessing steps 

involved in CNN training. Imagery data from GIS and Envi 

is prepared through programming and then further processed 

through steps such as patching, which divides large images 

into smaller parts; data augmentation, which increases the 

dataset by transformation; extracting relevant features; nor-

malization; and data splitting and organization. The reason 

behind the preprocessing steps is to clean and prepare the 

imagery data for the CNN model. 

 

 

Figure 8. Preprocessing images 

 

 

Figure 9. Preprocessing through programming 

2.7. Convolutional neural network model 

To categorize mineral images, this study developed a Con-

volutional Neural Network (CNN) with a focus on feldspar and 

chalcocite. A 150×150 feature map is produced by the CNN’s 

Conv2D layer, which uses 32 filters of size 3×3 to extract fun-

damental characteristics, such as edges. To save computational 

costs and preserve essential characteristics, a MaxPooling2D 

layer is used to shrink the spatial dimensions to 75×75. Next, 

the network adds additional Conv2D layers, gradually reducing 

the feature map to 8×8 and increasing the filter count to 128. 

As the network becomes deeper, these layers can collect pro-

gressively more complex characteristics. Based on the likeli-

hood of the affirmative class, the architecture’s last dense layer 

produces a binary classification, as shown in Figure 10. 

The train generator’s batches were used to train the model 

using a fit function, and the validation data was used to as-

sess the model performance. The model performed well in 

categorizing unknown data, with a test accuracy of 95.09% 

after 10 epochs of training. The trained model was also used 

to categorize fresh photos. After being scaled, normalized, 

and run through the model, the images were effectively clas-

sified as either Feldspar or Chalcocite, depending on a thresh-

old value. The visualization model is shown in Figure 11. 

Figure 11 shows the architecture and parameters used for 

image classification in the CNN model. The model includes 

several convolutional and pooling layers that smoothly ex-

tract the spatial features in the imagery data. In the second 

layer, the output is flattened and passes through a dense lay-

er, which learns the complex patterns and relationships with-

in the imagery data. To prevent model overfitting, a dropout 

layer is added, which also aids in model generalization. In 

short, the model contains 4.37 million trainable parameters, 

reflecting its depth of capability to correctly analyze and 

classify imagery data as required in this study. 
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Figure 10. Architecture of CNN 

 

 

Figure 11. CNN model 

3. Results and discussion 

The production of minerals within hydrothermal altera-

tion zones is widely documented in geological literature. 

When mineral-rich fluids contact host rocks, they undergo 

hydrothermal alteration, resulting in significant changes in 

mineralogical composition. A variety of elements influence 

this process, including the temperature, pressure, and chemi-

cal composition of the hydrothermal fluids, as well as the 

type of host rocks. In this investigation, Spectral Angle Map-

ping (SAM) classification was performed to identify miner-

als associated with porphyry and other hydrothermal altera-

tion zones. QGIS was used to produce these Hymaps. This 

classification technique detects the presence of minerals in 

remote sensing data by using their spectral signature. Mine-

rals of porphyry hydrothermal alteration zones were identi-

fied using the SAM classification, including epidote, calcite, 

and chlorite, as shown in Figure 12a. 

Minerals formed in porphyry hydrothermal alteration 

zones are classified based on spectral signatures. In addition 

to discovering porphyry hydrothermal alteration zones, our 

investigation indicated the presence of additional hydrother-

mal alteration zones in the Gilgit and surrounding areas, as 

shown in Figure 12b-c. 

In both the training and validation sets, the model initially 

showed promising results with modest accuracy and losses 

throughout the learning process. Accuracy increased gradually 

as training progressed, but overfitting began to emerge, with 

the model performing significantly better on the training data 

than on the validation data. Despite this, the model continued 

to improve, eventually achieving very high accuracy and min-

imal loss on both sets, particularly in the later epochs. Alt-

hough the model achieved 100% accuracy on the training set, 

its performance on the validation set marginally decreased, 

indicating some difficulty in generalizing new data. 

The output illustrates the comparison between training 

and validation accuracy, as well as the changes in training 

and validation loss during training, as shown in Table 1. 

 
Table 1. Model accuracy & loss 

Epoch 
Training 

accuracy, % 

Training 

loss 

Validation 

accuracy 

Validation 

loss, % 

1 49.34 0.7728 76.82 46.81 

2 71.88 0.4562 73.33 37.23 

3 86.00 0.3805 93.75 17.12 

4 96.88 0.1742 86.67 23.22 

5 90.48 0.2524 95.57 11.34 

6 93.75 0.2267 93.33 17.86 

7 95.47 0.1365 89.32 33.19 

8 100.00 0.0356 73.33 40.59 

9 95.09 0.1473 94.27 16.04 

10 96.88 0.046 93.33 5.41 

 

The validation accuracy and loss fluctuate initially, indi-

cating that the model is adapting to the data and that there 

may be occasional instances of overfitting or underfitting. 

The model attempts to generalize from training data to vali-

dation data, so this volatility is typical of early epochs. How-

ever, the model performance was enhanced by changing a 

few crucial parameters, including the learning rate, the drop-

out rate, and the number of convolutional layers. To avoid 

overfitting or underfitting and maintain a balance in learning, 

these parameters are essential. By arbitrarily turning off 

neurons during training, dropout enhances generalization by 

preventing the model from remembering the training set. 

Adjusting the learning rate enables the model to learn at a 

speed that prevents overshooting ideal values or learning too 

slowly, and adding more convolutional layers improves the 

model capacity to extract more complex features from the 

input data. As a result, the validation accuracy initially in-

creased and occasionally surpassed the training accuracy. 

This phenomenon, in which the model performs momentarily 

better on previously unseen data, may be attributed to the 

regularization effect of dropout and learning rate adjust-

ments. However, as the epochs progress, the validation accu-

racy fluctuates and initially tends to decline before gradually 

catching up to the training accuracy. Both accuracies eventu-

ally stabilize and improve.  

The validation loss exhibits a similar pattern, initially  

rising, which suggests that the model has difficulty in gene-

ralizing. However, as the model gains more experience, the 

loss decreases, indicating improved results of both the trai-

ning and validation sets. Both training and validation loss 

decline gradually over time, indicating that the model is 

learning efficiently and avoiding overfitting.  
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(a) (b) 

  

(c) (d) 

  

Figure 12. Hymaps of porphyry hydrothermal alteration zones: (a) porphyry hydrothermal alteration zones; (b) peripheral hydrothermal 

alteration zones; (c) potassic and phyllic alteration zones; (d) propylitic hydrothermal alteration zones 

 

In summary, the adjustments made to the model architec-

ture and learning parameters enabled it to overcome initial 

fluctuations and fit well to both the training and validation 

data, as shown in Figure 13. The steady alignment of valida-

tion accuracy with training accuracy, and the decrease in 

loss, suggest that the model effectively learned from the data 

and established a balance between learning from the training 

data and generalizing to unseen validation data. 
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(a) 

 

(b) 

 

Figure 13. Comparison of model performance metrics: (a) training 

and validation accuracy; (b) training and validation loss 

 

With a low test loss of 0.0936 and a high test accuracy of 

95.09%, the model demonstrated exemplary performance and 

minimal prediction error. Table 2 highlights the model accu-

racy percentage and loss. 

 
Table 2. Model accuracy & loss 

Dataset Accuracy (%) Loss (%) 

Training 96 0.967 

Validation 93.33 0.152 

Test 92.87 0.2595 

 

It efficiently categorizes minerals by examining the pix-

el proportions of a scaled and normalized TIFF image, 

using the unique RGB values of Feldspar (magenta) and 

Chalcocite (green) as shown in Figure 14. The method 

computes percentages, shows the results, and compares 

pixels to the preset RGB values. Geographical software, 

such as ENVI or GIS, is then used to map the distribution 

of minerals and extract geographic information, as shown 

in Figure 15. To facilitate mining, resource management, 

and environmental protection applications, this method 

helps pinpoint the exact locations of minerals. 

The classification of minerals based on color pixels is 

shown in Figure 14. The green areas in the figure indicate 

chalcopyrite, and the pink areas show feldspar. The reason for 

using color-based classification in this study is to identify and 

separate different minerals in the imagery data, which in turn 

helps in understanding their distribution within the study area. 

 

Figure 14. Classification based on color pixels (chalcocite – 

5.27%; feldspar – 2.72%) 

 

 

Figure 15. Extracted coordinates through ENVI 

 

The coordinates of the imagery data are extracted using 

ENVI software, as shown in Figure 15. These coordinates 

mark the exact locations in the study area, which will help 

with real-world ground positions in the future. This was 

important, as it gives confidence in the accuracy and preci-

sion required for model development. 

4. Conclusions 

Spectral Angle Mapping classification was used to identi-

fy the minerals formed in porphyry hydrothermal alteration 

zones. A spectral library was prepared to identify the mine-

rals formed in porphyry hydrothermal alteration zones. The 

Spectral Angle Mapping classification algorithm was run, 

which matches the spectral signatures found in the satellite 

imagery with those provided in the spectral library. Identified 

minerals include Chlorite, Chalcocite, Pyrite, Epidote, Mala-

chite, Calcite, Alunite, Magnetite, Biotite, Serpentine, Dolo-

mite and Feldspar. On the other hand, a Convolutional Neu-

ral Network model was developed to classify minerals based 

on the pixel values of their colors. Using satellite images as a 

guide, we successfully created and deployed a Convolutional 

Neural Network (CNN) model to categorize minerals, with a 

focus on Chalcocite and Feldspar due to their distinctive 

color patterns. Chalcocite (“#00FE00”) and Feldspar 

(“#FE00FE”) are the two distinct color codes assigned to 

each mineral, which allowed the model to distinguish be-

tween them with great accuracy. These color codes were 

used in the categorization procedure. 

We increased the size of our dataset to 3000 images by 

using image augmentation techniques, which guarantees a 
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stable and varied dataset for testing, validation, and training. 

The training (70%), validation (15%), and testing (15%) sets 

of data enabled efficient assessment of the model perfor-

mance. To determine whether a picture represented Feldspar 

or Chalcocite, the CNN architecture used consisted of multi-

ple Conv2D and MaxPooling2D layers, followed by a fully 

connected Dense layer with a binary classification output. 

The developed model achieves training accuracy and loss of 

96% and 0.967%, respectively, with a validation accuracy of 

93.33% and a validation loss of 0.152%. Moreover, the test 

accuracy is 92.87%, and the test loss is 0.2595%. 
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Передові технології дистанційного зондування на основі CNN для створення 

карт мінеральних ресурсів порфірових систем у регіоні Гілгіт 

М. Мунзарін, Ф. Бібі, С. Іхсан, К.С. Шах, М.З. Емад 

Мета. Вдосконалення ідентифікації мінералів у зонах порфірової гідротермальної альтерації, особливо у складному гірському 

рельєфі району Гілгіт, шляхом інтеграції даних дистанційного зондування зі згортковими нейронними мережами (CNN). 

Методика. Використано супутникові знімки Landsat 8 Collection 2 Level 1, отримані з бази United States Geological Survey 

(USGS). Їх оброблено у програмному забезпеченні ENVI 5.3 із застосуванням методу класифікації Spectral Angle Mapping (SAM) 

для виявлення зон мінеральних змін. Набір даних було розширено шляхом аугментації, нормалізовано та розподілено на навчальну 

(75%), валідаційну (15%) і тестову (15%) вибірки. Створено модель CNN, яка включає згорткові, пулінгові та повнозв’язні шари 

для бінарної класифікації мінеральних складів. 

Результати. Доведено, що передові CNN-методи дистанційного зондування демонструють високу ефективність у картуванні 

мінералів порфірових систем. Встановлено, що розроблена модель нейронної мережі досягла точності навчання понад 96% та валі-

дації 93.3% для таких мінералів як польовий шпат і халькоцит, завдяки їх спектральним характеристикам і домінантним кольоро-

вим ознакам. Визначено, що запропонований підхід виявився особливо корисним у важкодоступних гірських регіонах, зокрема в 

районі Гілгіт, де традиційні методи є складними та затратними. 

Наукова новизна. Уперше продемонстровано успішну інтеграцію даних дистанційного зондування з алгоритмами на основі 

CNN для точної класифікації мінералів у зонах порфірової альтерації, що дозволяє подолати обмеження польових методів у склад-

них природних умовах. 

Практична значимість. Розроблений підхід забезпечує ефективний інструмент для дистанційної розвідки мінеральних ресур-

сів у важкодоступних районах, сприяючи підвищенню точності та швидкості геологічних оцінок у межах району Гілгіт. 

Ключові слова: зони порфірової гідротермальної альтерації, ENVI, згорткова нейронна мережа, дистанційне зондування, нор-

малізація, аугментація даних, класифікація 
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