Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Comprehensive geomechanical assessment of pillar and roof stability during secondary extraction by the room-and-pillar method

Bagdagul Uakhitova1, Bayan Almatova1, Akzharkyn Balgynova1, Zhadra Shilmagambetova1, Ibatolla Arystan2, Aruzhan Kurantayeva1, Aigerim Karabatyrova 2

1K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan

2Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan


Min. miner. depos. 2025, 19(3):144-160


https://doi.org/10.33271/mining19.03.144

Full text (PDF)


      ABSTRACT

      Purpose. This study aims to substantiate the rational parameters of the room-and-pillar mining system for the Zhaman-Aibat copper sandstone deposit (Zhomart mine), taking into account the geomechanical characteristics of the rock mass.

      Methods. The research employed analytical calculations based on Shevyakov, Tsern, and Chernikov methods, numerical modeling using CPS 2005, Pillars 3, and Examine 2D software packages, as well as field observations and pilot-industrial testing. The stability of inter-room and barrier pillars was assessed iteratively, considering pillar shape factor, loading conditions, and long-term strength. The effectiveness of warning (yield) pillars and different rock bolts was experimentally verified.

      Findings. The optimal system parameters were determined as follows: panel span of approximately 70 m, extraction room width of 7 m, and inter-room pillar spacing of 16×16 m with a diameter of 9 m (pillar area about 64 m2). Experimental results confirmed the necessity of leaving 18-20 m2 warning pillars, functioning in an over-stressed deformation regime. The calculated width of barrier pillars was 30 m, with a stability factor of n ≈ 2.1. Structural drawbacks of steel-polymer bolts with metric threads were identified, as they can trigger progressive failure; instead, using A20V rope-thread bolts is recommended. Numerical modeling demonstrated that camouflet blasting of boreholes above barrier pillars helps unload the rock mass and reduce stress concentration.

      Originality. For the first time under the geological conditions of the Zhomart mine, a comprehensive stability assessment of inter-room, warning, and barrier pillars was conducted using back-analysis data and in-situ observations. A quantitative relationship was established for the parameters of warning pillars operating under over-stressed deformation, substantiating the necessity of their application. The effectiveness of camouflet blasting for controlled caving of the overlying strata was also demonstrated.

      Practical implications. The developed recommendations allow for the reduction of ore losses in pillars, the improvement of the overall stability of the mining system, and the minimization of geotechnical risks. The obtained results can be applied in designing and operating mines with similar geological and structural conditions.

      Keywords: Zhaman-Aibat deposit, Zhomart mine, room-and-pillar mining, inter-room pillars, barrier pillars, rock bolt support, rock mass stability


      REFERENCES

  1. Kunarbekova, M., Yeszhan, Y., Zharylkan, S., Alipuly, M., Zhantikeyev, U., Beisebayeva, A., Kudaibergenov, A., Rysbekov, K., Toktarbay, Z., & Azat, S. (2024). The state of the art of the mining and metallurgical industry in Kazakhstan and future perspectives: A systematic review. ES Materials & Manufacturing, 25, 1219. http://doi.org/10.30919/esmm1219
  2. Bekbassarov, S., Soltabaeva, S., Daurenbekova, A., & Ormanbekova, A. (2015). “Green” economy in mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 431-434. https://doi.org/10.1201/b19901-75
  3. Pavlychenko, A.V., Ihnatov, A.O., Koroviaka, Y.A., Ratov, B.T., & Zakenov, S.T. (2022). Problematics of the issues concerning development of energy-saving and environmentally efficient technologies of well construction. IOP Conference Series: Earth and Environmental Science, 1049(1), 012031. https://doi.org/10.1088/1755-1315/1049/1/012031
  4. Baibatyrova, B., Tileuberdi, A., Begentayev, M., Kuldeyev, E., Nyrlybayev, R., Altybayev, Z., Sarsenbayev, B., Abduova, A., & Sauganova, G. (2024). Improving the methods of solid domestic waste disposal to reduce its human impact on the environment. Sustainability, 16(24), 11071. https://doi.org/10.3390/su162411071
  5. Hapich, H., Andrieiev, V., Kovalenko, V., Hrytsan, Y., & Pavlychenko, A. (2022). Study of fragmentation impact of small riverbeds by artificial waters on the quality of water resources. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 185-189. https://doi.org/10.33271/nvngu/2022-3/185
  6. Kholodenko, T., Ustimenko, Y., Pidkamenna, L., & Pavlychenko, A. (2014). Ecological safety of emulsion explosives use at mining enterprises. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 255-260. https://doi.org/10.1201/b17547
  7. Matayev, A.K., Kainazarova, A.S., Arystan, I.D., Abeuov, Ye., Kainazarov, A.S., Baizbayev, M.B., Demin, V.F., & Sultanov, M.G. (2021). Research into rock mass geomechanical situation in the zone of stope operations influence at the 10th Anniversary of Kazakhstan’s Independence mine. Mining of Mineral Deposits, 15(1), 1-10. https://doi.org/10.33271/mining15.01.042
  8. Nurpeisova, M.B., Salkynov, A.T., Soltabayeva, S.T., & Miletenko, N.A. (2024). Patterns of development of geomechanical processes during hybrid open pit/underground mineral mining. Eurasian Mining, 41(1), 7-11. https://doi.org/10.17580/em.2024.01.02
  9. Volkov, A.P., Buktukov, N.S., & Kuanyshbaiuly, S. (2022). Safe and effective methods for mining thin tilt and steeply dipping deposits with ore drawing via mud flow. Gornyi Zhurnal, 4, 86-91. https://doi.org/10.17580/gzh.2022.04.13
  10. Sailygarayeva, M., Nurlan, A., Rysbekov, K., Soltabayeva, S., Amralinova, B., & Baygurin, Z. (2023). Predicting of vertical displacements of structures of engineering buildings and facilities. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 77-83. https://doi.org/10.33271/nvngu/2023-2/077
  11. Daineko, Y.A., Duzbayev, N.T., Kozhaly, K.B., Ipalakova, M.T., Bekaulova, Z.M., Nalgozhina, N.Z., & Sharshova, R.N. (2020). The use of new technologies in the organization of the educational process. Intelligent Computing: Proceedings of the 2020 Computing Conference, 3, 622-627. https://doi.org/10.1007/978-3-030-52243-8_46
  12. Moldabayeva, G.Z., Turdiyev, M.F., Suleimenova, R.T., Buktukov, N.S., Efendiyev, G.М., Kodanova, S.K., & Tuzelbayeva, S.R. (2025). Application of the integrated well-surface facility production system for selecting the optimal operating mode of equipment. Complex Use of Mineral Resources, 335(4), 96-109. https://doi.org/10.31643/2025/6445.44
  13. Rudenko, O., Galkina, D., Sadenova, M., Beisekenov, N., Kulisz, M., & Begentayev, M. (2024). Modelling the properties of aerated concrete on the basis of raw materials and ash-and-slag wastes using machine learning paradigm. Frontiers in Materials, 11, 1481871. https://doi.org/10.3389/fmats.2024.1481871
  14. Muratova, S., Pashchenko, O., Khomenko, V., & Zhailiev, A. (2025). Application of machine learning for wellbore stability assessment. Engineering for Rural Development, 24, 505-511. https://doi.org/10.22616/ERDev.2025.24.TF109
  15. Kondratyev, S.I., Baskanbayeva, D., Yelemessov, K., Khekert, E.V., Privalov, V.E., Sarsenbayev, Y., & Turkin, V. A. (2024). Control of hydrogen leaks from storage tanks and fuel supply systems to mining transport infrastructure facilities. International Journal of Hydrogen Energy, 95, 212-216. https://doi.org/10.1016/j.ijhydene.2024.11.182
  16. Yelemessov, K.K., Baskanbayeva, D.D., Sabirova, L.B., & Akhmetova, S.D. (2023). Justification of an acceptable modern energy-efficient method of obtaining sodium silicate for production in Kazakhstan. IOP Conference Series: Earth and Environmental Science, 1254(1), 012002. https://doi.org/10.1088/1755-1315/1254/1/012002
  17. Buktukov, N., Gumennikov, Y., & Moldabayeva, G. (2024). Solutions to the problems of transition to green energy in Kazakhstan. World-Systems Evolution and Global Futures, 113-133. https://doi.org/10.1007/978-3-031-67583-6_6
  18. Kezembayeva, G., Rysbekov, K., Dyussenova, Z., Zhumagulov, A., Umbetaly, S., Barmenshinova, M., Yerkezhan, B., & Zhakypbek, Y. (2025). Public health risk assessment of quantitative emission from a molybdenum production plant: Case study of Kazakhstan. Engineered Science, 34, 1454. https://doi.org/10.30919/es1454
  19. Turegeldinova, A., Amralinova, B., Fodor, M.M., Rakhmetullina, S., Konurbayeva, Z., & Kiizbayeva, Z. (2024). STEM and the creative and cultural industries: the factors keeping engineers from careers in the CCIs. Frontiers in Communication, 9, 1507039. https://doi.org/10.3389/fcomm.2024.1507039
  20. Zhakypbek, Y., Belkozhayev, A. M., Kerimkulova, A., Kossalbayev, B.D., Murat, T., Tursbekov, S., & Allakhverdiev, S.I. (2025). MicroRNAs in plant genetic regulation of drought tolerance and their function in enhancing stress adaptation. Plants, 14(3), 410. https://doi.org/10.3390/plants14030410
  21. Konysbayeva, A., Yessimsiitova, Z., Toktar, M., Mutushev, A., Zhakypbek, Y., Tursbekov, S., Tursbekova, G., Kozhayev, Z., Kozhamzharova, A., Mombekov, S., & Raheem, S. (2025). Result of reclamation of man-made dumps from phosphorite deposits in the semi-desert zone of Kazakhstan. PLoS ONE, 20(2), e0317500. https://doi.org/10.1371/journal.pone.0317500
  22. Baibatsha, A.B. (2002). Geologiya mestorozhdeniy poleznykh iskopaemykh. Almaty, Kazakhstan: Kazakh National Technical University. Available at: https://www.geokniga.org/bookfiles/geokniga-baybatshageologiyampi.pdf
  23. Amralinova, B.B., Frolova, O.V., Mataibaeva, I.E., Agaliyeva, B.B., & Khromykh, S.V. (2021). Mineralization of rare metals in the lakes of East Kazakhstan. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 16-21. https://doi.org/10.33271/nvngu/2021-5/016
  24. Umarbekova, Z.T., Zholtayev, G.Z., Zholtayev, G.Z., Amralinova, B.B., & Mataibaeva, I.E. (2020). Silver halides in the hypergene zone of the Arkharly gold deposit as indicators of their formation in dry and hot climate (Dzungar Alatau, Kazakhstan). International Journal of Engineering Research and Technology, 13(1), 181-190. https://doi.org/10.37624/ijert/13.1.2020.181-190
  25. Dyachkov, B.A., Aitbayeva, S.S., Mizernaya, M.A., Amralinova, B.B., & Bissatova, A.E. (2020). New data on non-traditional types of East Kazakhstan rare metal ore. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 11-16. https://doi.org/10.33271/nvngu/2020-4/011
  26. Dyachkov, B.A., Amralinova, B.B., Mataybaeva, I.E., Dolgopolova, A.V., Mizerny, A.I., & Miroshnikova, A. P. (2017). Laws of formation and criteria for predicting nickel content in weathering crusts of east Kazakhstan. Journal of the Geological Society of India, 89(5), 605-609. https://doi.org/10.1007/s12594-017-0650-7
  27. Ahmadi, H., Hussaini, M.R., Yousufi, A., Bekbotayeva, A., Baisalova, A., Amralinova, B., Mataibayeva, I., Rahmani, A.B., Pekkan, E., & Sahak, N. (2023). Geospatial insights into ophiolitic complexes in the Cimmerian realm of the Afghan central block (Middle Afghanistan). Minerals, 13(11), 1453. https://doi.org/10.3390/min13111453
  28. Efendiyev, G.M., Moldabayeva, G.Z., Buktukov, N.S., & Kuliyev, M.Y. (2024). Comprehensive cementing quality assessment and risk management system. SOCAR Proceedings, 4, 42-47. https://doi.org/10.5510/OGP20240401015
  29. Myrzakulov, M.K., Jumankulova, S.K., Barmenshinova, M.B., Martyushev, N.V., Skeeba, V.Y., Kondratiev, V.V., & Karlina, A.I. (2024). Thermodynamic and technological studies of the electric smelting of Satpaevsk ilmenite concentrates. Metals, 14(11), 1211. https://doi.org/10.3390/met14111211
  30. Myrzakulov, M.K., Dzhumankulova, S.K., Yelemessov, K.K., Barmenshinova, M.B., Martyushev, N.V., Skeeba, V.Y., Kondratiev, V.V., & Karlina, A.I. (2024). Analysis of the effect of fluxing additives in the production of titanium slags in laboratory conditions. Metals, 14(12), 1320. https://doi.org/10.3390/met14121320
  31. Zhagifarov, A.M., Akhmetov, D.A., Suleyev, D.K., Zhumadilova, Z.O., Begentayev, M.M., & Pukharenko, Y.V. (2024). Investigation of hydrophysical properties and corrosion resistance of modified self-compacting concretes. Materials, 17(11), 2605. https://doi.org/10.3390/ma17112605
  32. Imansakipova, B.B., Baygurin, Z.D., Soltabaeva, S.T., Milev, I., & Miletenko, I.V. (2014). Causes of strain of buildings and structures in areas of abnormal stress and surveillance terrestrial laser scanners. Life Science Journal, 11(9s), 165-170.
  33. Akhmetkanov, D.K. (2023). New variants for wide orebodies high-capacity mining systems with controlled and continuous in-line stoping. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(459), 6-21. https://doi.org/10.32014/2023.2518-170X.295
  34. Pashchenko, O.A., Khomenko, V.L., Ratov, B.T., Koroviaka, Ye.A., & Rastsvietaiev, V.O. (2024). Comprehensive approach to calculating operational parameters in hydraulic fracturing. IOP Conference Series: Earth and Environmental Science, 1415(1), 012080. https://doi.org/10.1088/1755-1315/1415/1/012080
  35. Golik, V.I., Klyuev, R.V., Martyushev, N.V., Zyukin, D.A., & Karlina, A.I. (2024). Determination of safe spans of mine workings based on the bearing capacity of rocks in deposit development. Mining Industry, 5S, 59-63.
  36. Yu, Y., Chen, S.E., Deng, K.Z., & Fan, H.D. (2017). Long-term stability evaluation and pillar design criterion for room-and-pillar mines. Energies, 10(10), 1644. https://doi.org/10.3390/en10101644
  37. Stupnik, M., Kalinichenko, V., & Pismennyi, S. (2013). Pillars sizing at magnetite quartzites room-work. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 11-15. https://doi.org/10.1201/b16354-3
  38. García-Gonzalo, E., Fernández-Muñiz, Z., Garcia Nieto, P.J., Bernardo Sánchez, A., & Menéndez Fernández, M. (2016). Hard-rock stability analysis for span design in entry-type excavations with learning classifiers. Materials, 9(7), 531. https://doi.org/10.3390/ma9070531
  39. Yu, Y., Zhang, Q., Yang, X., Wang, Y., & Li, Z. (2017). Long-term stability evaluation and pillar design criterion. Energies, 10(10), 1644. https://doi.org/10.3390/en10101644
  40. Nazarov, L.A., Nazarova, L.A., & Freidin, A.M. (2006). Estimating the long-term pillar safety for room-and-pillar ore mining. Journal of Mining Science, 42(5), 530-539. https://doi.org/10.1007/s10913-006-0096-6
  41. Walton, G., Esterhuizen, G.S., & Tulu, I.B. (2021). Improved empirical hard rock pillar strength predictions using unconfined compressive strength as a proxy for brittleness. International Journal of Rock Mechanics and Mining Sciences, 148, 104934. https://doi.org/10.1016/j.ijrmms.2021.104934
  42. Moffat, R., Rodriguez, R., & Varas, F. (2021). Rock pillar design using a masonry equivalent numerical model. Energies, 14(4), 890. https://doi.org/10.3390/en14040890
  43. Toderas, M., Răileanu, P., Şeclăman, M., & Ilie, C. (2024). Stability analysis of the exploitation system with room and pillars. Applied Sciences, 14(5), 1827. https://doi.org/10.3390/app14051827
  44. Liu, H., Li, C., Li, J., & Yang, W. (2022). Study on stability of underlying room and pillar old goaf. Frontiers in Earth Science, 10, 1071250. https://doi.org/10.3389/feart.2022.1071250
  45. Guo, J., Xu, X., Zhang, H., & Zhou, Y. (2022). Research on factors affecting mine wall stability in isolated pillar mining in deep mines. Minerals, 12(5), 623. https://doi.org/10.3390/min12050623
  46. Li, N., Zare, M., Yi, C., & Jimenez, R. (2022). Stability risk assessment of underground rock pillars using logistic model trees. International Journal of Environmental Research and Public Health, 19(4), 2136. https://doi.org/10.3390/ijerph19042136
  47. Alejano, L.R., Arzúa, J., Castro-Filgueira, U., & Malan, F. (2017). Strapping of pillars with cables to enhance pillar stability. Journal of the Southern African Institute of Mining and Metallurgy, 117(6), 527-540. https://doi.org/10.17159/2411-9717/2017/v117n6a7
  48. Demin, V., Kalinin, A., Baimuldin, M., Tomilov, A., Smagulova, A., Mutovina, N., Shokarev, D., Aliev, S., Akpanbayeva, A., & Demina, T. (2024). Developing a technology for driving mine workings with combined support and friction anchors in ore mines. Applied Sciences, 14(22), 10344. https://doi.org/10.3390/app142210344
  49. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of modified concrete in lining in underground structures. IOP Conference Series. Earth and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  50. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva, L.M., & Bogzhanova, Z.K. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine “10 years of Independence of Kazakhstan.” Ugol, 6, 10-14. https://doi.org/10.18796/0041-5790-2020-6-10-14
  51. Sultanov, M.G., Mataev, A.K., Kaumetova, D.S., Abdrashev, R.M., Kuantay, A.S., & Orynbayev, B.M. (2020). Development of the choice of types of support parameters and technologies for their construction at the Voskhod field. Ugol, 10, 17-21. https://doi.org/10.18796/0041-5790-2020-10-17-21
  52. Istekova, S., Makarov, A., Tolybaeva, D., Sirazhev, A., & Togizov, K. (2024). Determining the boundaries of overlying strata collapse above mined-out panels of Zhomart mine using seismic data. Geosciences, 14(11), 310. https://doi.org/10.3390/geosciences14110310
  53. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, 1, 41-45. https://doi.org/10.17580/em.2022.01.08
  54. Majeed, Y., Abbas, N., & Emad, M.Z. (2023). Stability evaluation of room-and-pillar rock salt mines by using a flat jack technique – A case study. Journal of the Southern African Institute of Mining and Metallurgy, 123(6), 287-298. http://doi.org/10.17159/2411-9717/1872/2023
  55. Aitaliyev, S.M., & Takishov, A.A. (2000). Control of arch formation in the room-and-pillar system of mining. Part I. Stress-strain state of the rock mass. Journal of Mining Science, 36(2), 97-105. https://doi.org/10.1007/BF02551788
  56. Nurpeisova, M.B., Bitimbayev, M.Z., Rysbekov, K.B., & Bekbasarov, S.S. (2021). Forecast changes in the geodynamic regime of geological environment during large-scale subsoil development. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 5-10. https://doi.org/10.33271/nvngu/2021-6/005
  57. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901
  58. Rysbekov, K.B., Kyrgizbayeva, D.M., Miletenko, N.A., & Kuandykov, T.A. (2024). Integrated monitoring of the area of Zhilandy deposits. Eurasian Mining, 41(1), 3-6. https://doi.org/10.17580/em.2024.01.01
  59. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  60. Guo, J., Xu, X., Zhang, H., & Zhou, Y. (2022). Research on factors affecting mine wall stability in isolated pillar mining in deep mines. Minerals, 12(5), 623. https://doi.org/10.3390/min12050623
  61. Лицензия Creative Commons