Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Study of rational solution parameters during in-situ uranium leaching

Shukhrat Alikulov1, Javokhir Toshov2, Ravil Mussin3, Mukhammedrakhym Rabatuly3, Bauyrzhan Tolovkhan3, Zhanbota Bogzhanova 3, Ayauzhan Gabitova3

1Navoi State University of Mining and Technologies, Navoi, Uzbekistan

2Tashkent State Technical University, Tashkent, Uzbekistan

3Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan


Min. miner. depos. 2025, 19(1):37-46


https://doi.org/10.33271/mining19.01.037

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to study and optimize the in-situ leaching (ISL) process for uranium mining using surface-active substances (surfactants) to improve the efficiency of uranium extraction from low-permeability ores.

      Methods. As part of the research, samples of low-permeability ores are taken and previously analyzed for porosity and filtration anisotropy coefficient, which is important for assessing their filtration properties. To study the effect of surfactants such as polyacrylamide, sulfanol and Mesh Drainage Liquid Filter (MDLF) compounds, solutions with different concentrations of these substances are prepared. Also, to determine the most effective surfactant concentrations, additional studies are conducted to optimize the leaching conditions, taking into account the effects of various factors such as temperature and pH of the solution. All the obtained results are mathematically analyzed to identify the optimal conditions, which helps to increase the efficiency of the uranium leaching process and improve the experimental results.

      Findings. In the course of the research conducted on the selection of surfactants for uranium leaching from low-permeability ores, the following results have been obtained. Sulfanol, as one of the surfactants used, shows the best results, significantly increasing the filtration coefficient from 0.5 to 2.0 m/day. This confirms its high efficiency in improving the ore horizon permeability and in accelerating the leaching process.

      Originality. The scientific novelty of the research is in the development of methods for optimal use of surface-active substances to improve the efficiency of the in-situ uranium leaching process from low-permeability ores. Studies have been conducted to determine the influence of various surfactants on the filtration properties of ores, as well as their in-fluence on accelerating the leaching process.

      Practical implications. The practical significance of the research is in the possibility of using the obtained data to optimize the in-situ uranium leaching process at real deposits with low-permeability of ore horizons. The developed recommendations on the selection of surfactants, such as sulfanol and polyacrylamide, as well as their optimal concentrations, can be directly applied to improve leaching efficiency, increase filtration coefficient, and reduce seam treatment time.

      Keywords: in-situ leaching, colmatation, sulfanol, polyacrylamide, porosity, anisotropy, filtration coefficient


      REFERENCES

  1. Demin, V., Kalinin, A., Baimuldin, M., Tomilov, A., Smagulova, A., Mutovina, N., Shokarev, D., Aliev, S., Akpanbayeva, A., & Demina, T. (2024). Developing a technology for driving mine workings with combined support and friction anchors in ore mines. Applied Sciences, 14(22), 10344. https://doi.org/10.3390/app142210344
  2. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-31
  3. Demin, V., Khalikova, E., Rabatuly, M., Amanzholov, Zh., & Zhumabekova, A. (2024). Research into mine working fastening technology in the zones of increased rock pressure behind the longwall face to ensure safe mining operations. Mining of Mineral Deposits, 18(1), 27-36. https://doi.org/10.33271/mining18.01.027
  4. Maussymbayeva, A.D., Yurov, V.M., Portnov, V.S., Rabatuly, M., & Rakhimova, G.M. (2024). Assessment of the influence of the surface layer of coals on gas-dynamic phenomena in the coal seam. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 5-11. https://doi.org/10.33271/nvngu/2024-2/005
  5. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 24-30.
  6. Maussymbayeva, A.D., Portnov, V.S., Imanbaeva, S.B., Rabatuly, M., & Rakhimova, G.M. (2024). Influence of rock shear processes on the methane content of longwall faces. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 11-17. https://doi.org/10.33271/nvngu/2024-4/011
  7. Wang, Z., Ren, T., & Cheng, Y. (2017). Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results. Journal of Natural Gas Science and Engineering, 43, 242-253. https://doi.org/10.1016/j.jngse.2017.03.029
  8. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  9. Ostrogórski, P., Skotniczny, P., & Pucka, M. (2022). Measurements of the methane concentration along the longwall excavations and longwall. Archives of Mining Sciences, 67(1). https://doi.org/10.24425/ams.2022.140861
  10. Lian, G., An, Y., Sun, J., Yang, B., & Shen, Z. (2024). Effects and driving mechanisms of bioremediation on groundwater after the neutral in situ leaching of uranium. Science of the Total Environment, 946, 174406. https://doi.org/10.1016/j.scitotenv.2024.174406
  11. Wang, B., Luo, Y., Liu, J.H., Li, X., Zheng, Z.H., Chen, Q.Q., & Fan, Q.R. (2022). Ion migration in in-situ leaching (ISL) of uranium: Field trial and reactive transport modelling. Journal of Hydrology, 615, 128634. https://doi.org/10.1016/j.jhydrol.2022.128634
  12. Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., & Gregory, D.H. (2014). Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing. Chemical Reviews, 114(2), 1170-1206. https://doi.org/10.1021/cr4002353
  13. Mukherjee, S., Goswami, S., & Zakaulla, S. (2023). Geological relationship between hydrocarbon and uranium: Review on two different sources of energy and the Indian scenario. Geoenergy Science and Engineering, 221, 111255. https://doi.org/10.1016/j.petrol.2022.111255
  14. Wang, Z., Song, H., Chen, Y., Song, J., Hou, M., Li, Q., & Yu, H. (2024). Uranium resource of Europe: Development status, metallogenic provinces and geodynamic setting. Energy Strategy Reviews, 54, 101467. https://doi.org/10.1016/j.esr.2024.101467
  15. Yang, H., Liu, Y., Chen, Z., Waterhouse, G. I., Ma, S., & Wang, X. (2022). Emerging technologies for uranium extraction from seawater. Science China. Chemistry, 65(12), 2335-2337. https://doi.org/10.1007/s11426-022-1358-1
  16. Tsoy, B.V., Myrzakhmetov, S.S., Bekbotaeva, A.A., & Yusupov, Kh.A. (2022). New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits. Gornyi Zhurnal, 7, 27-31. https://doi.org/10.17580/gzh.2022.07.04
  17. Stupnik, N.I., Fedko, M.B., Kolosov, V.A., & Pismennyy, S.V. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise Skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 21-25.
  18. Yousufi, A., Ahmadi, H., Bekbotayeva, A., Arshamov, Y., Baisalova, A., Omarova, G., & Pekkan, E. (2023). Integration of remote sensing and field data in ophiolite investigations: A case study of Logar ophiolite complex, SE Afghanistan. Minerals, 13(2), 234. https://doi.org/10.3390/min13020234
  19. Mendygaliyev, A., Arshamov, Y., Selezneva, V., Yazikov, E., & Bekbotayeva, A. (2021). Prospects for application of multi-spectral earth sensing data in forecasting and searching for reservoir-infiltration uranium deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(446), 90-97. https://doi.org/10.32014/2021.2518-170x.39
  20. Alikulov, S., Babayev, S., Alimov, M., Yuldoshev, A., & Sharopov, K. (2023). Research on the choice of the composition of the leaching solution during the extraction of gold by the method of underground leaching from used uranium wells. E3S Web of Conferences, 414, 01004. https://doi.org/10.1051/e3sconf/202341701004
  21. Lyashenko, V.I., Dudar, T.V., Stus, V.P., & Shapovalov, V.A. (2024). Justification of efficiency and subsoil protection during underground development of ore deposits using traditional technologies in combination with metals leaching. Mineral Resources of Ukraine, 2, 69-77. https://doi.org/10.31996/mru.2024.2.69-77
  22. Qiu, W., Yang, Y., Song, J., Que, W., Liu, Z., Weng, H., & Wu, J. (2025). A deep-learning-based multiobjective optimization for the design of in-situ uranium leaching system under multiple uncertainties. Journal of Hydrology, 651, 132576. https://doi.org/10.1016/j.jhydrol.2024.132576
  23. Liu, Y., He, Y., Chen, J., Cheng, N., & Wang, H. (2024). Progress on enhancing seepage-leaching mass-transfer research for in-situ leaching mining of low-permeability uranium-bearing sandstone: A review. Journal of Radioanalytical and Nuclear Chemistry, 333(9), 4485-4502. https://doi.org/10.1007/s10967-024-09585-5
  24. Abney, C.W., Mayes, R.T., Saito, T., & Dai, S. (2017). Materials for the recovery of uranium from seawater. Chemical Reviews, 117(23), 13935-14013. https://doi.org/10.1021/acs.chemrev.7b00355
  25. Yusupov, K.A., Rysbekov, K.B., Aben, K.K., & Bakhmagambetova, G.B. (2021). Increasing gold leaching efficiency with change of solution rheological properties. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 14-18. https://doi.org/10.33271/nvngu/2021-3/014
  26. Yussupov, K., Aben, E., Myrzakhmetov, S., Akhmetkanov, D., & Sarybayev, N. (2024). Increasing the efficiency of underground block leaching of metal. Civil Engineering Journal, 10(10), 3339-3349. https://doi.org/10.28991/CEJ-2024-010-10-014
  27. Zhang, L., Wen, B., Chen, L., Chen, H., & Wu, K. (2024). Variations in pore structures and permeabilities of ion adsorption rare earth ores during simulated in-situ leaching: Effect of newly formed clay particles and their swelling. Hydrometallurgy, 228, 106357. https://doi.org/10.1016/j.hydromet.2024.106357
  28. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. Rudarsko Geolosko Naftni Zbornik, 38(5), 49-60. https://doi.org/10.17794/rgn.2023.5.5
  29. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geolosko-Naftni Zbornik, 37(5), 169-180. https://doi.org/10.17794/rgn.2022.5.14
  30. Rysbekov, K.B., Kyrgizbayeva, D.M., Miletenko, N.A., & Kuandykov, T.A. (2024). Integrated monitoring of the area of Zhilandy deposits. Eurasian Mining, 41(1), 3-6. https://doi.org/10.17580/em.2024.01.01
  31. Rakishev, B.R., Bondarenko, V.I., Маtayev, M.M., & Kenzhetayev, Z.S. (2019). Influence of chemical reagent complex on intensification of uranium well extraction. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 25-30. https://doi.org/10.29202/nvngu/2019-6/4
  32. Yuan, Y., Yang, Y., Ma, X., Meng, Q., Wang, L., Zhao, S., & Zhu, G. (2018). Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Advanced Materials, 30(12), 1706507. https://doi.org/10.1002/adma.201706507
  33. Bektay, E., Turysbekova, G., Shiderin, B., & Bektayev, M. (2024). Industrial application of bacterial iron oxidation in in-situ leaching technologies for uranium. Engineering Journal of Satbayev University, 146(5), 25-31. https://doi.org/10.51301/ejsu.2024.i5.04
  34. Chen, J., Zhao, Y., Song, Q., Zhou, Z., & Yang, S. (2018). Exploration and mining evaluation system and price prediction of uranium resources. Mining of Mineral Deposits, 12(1), 85-94. https://doi.org/10.15407/mining12.01.085
  35. Monnet, A., Gabriel, S., & Percebois, J. (2017). Long-term availability of global uranium resources. Resources Policy, 53, 394-407. https://doi.org/10.1016/j.resourpol.2017.07.008
  36. Jia, M., Luo, B., Lu, F., Yang, Y., Chen, M., Zhang, C., & Xu, Q. (2024). Improved FMM for well locations optimization in in-situ leaching areas of sandstone uranium mines. Nuclear Engineering and Technology, 56, 3750-3757. https://doi.org/10.1016/j.net.2024.04.023
  37. Nurpeisova, А., Shevko, V., Aitkulov, D., & Kushakova, L. (2023). Optimization of the electrothermal production of ferrosilicon from the leaching tailings of the oxidized copper ore of Almaly. Engineering Journal of Satbayev University, 145(1), 19-24. https://doi.org/10.51301/ejsu.2023.i1.03
  38. Li, G., & Yao, J. (2024). A review of in situ leaching (ISL) for uranium mining. Mining, 4(1), 120-148. https://doi.org/10.3390/mining4010009
  39. Sanakulov, K.S., Fuzaylov, O.U., & Kenbaeva, Zh.A. (2020). Microwave processing of sulphide gold concentrates. Gornyy Vestnik Uzbekistana, 1, 53-56.
  40. Chen, M., Yang, Y., Liu, W., Wang, C., & Johannessen, B. (2018). An in-situ synchrotron XAS study on the evolution of aqueous arsenic species in acid pressure leaching. Hydrometallurgy, 175, 11-19. https://doi.org/10.1016/j.hydromet.2017.10.016
  41. Khawassek, Y.M., Taha, M.H., & Eliwa, A.A. (2016). Kinetics of leaching process using sulfuric acid for Sella uranium ore material, South Eastern Desert, Egypt. International Journal of Nuclear Energy Science and Engineering, 6, 62-73. https://doi.org/10.14355/ijnese.2016.06.006
  42. Rakishev, B., Kenzhetaev, Z., Mataev, M., & Togizov, K. (2022). Improving the efficiency of downhole uranium production using oxygen as an oxidizer. Minerals, 12(8), 1005. https://doi.org/10.3390/min12081005
  43. Kuandykov, T.A., Karmanov, T.D., Kuldeyev, E.I., Yelemessov, K.K., & Kaliev, B.Z. (2022). New technology of uncover the ore horizon by the method of in-situ leaching for uranium mining. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Science, 3, 142-154. https://doi.org/10.32014/2022.2518-170X.186
  44. Tsoy, B., Myrzakhmetov, S., Yazikov, E., Bekbotayeva, A., & Bashilova, Y. (2021). Application of radio-wave geointoscopy method to study the nature of spreading the solutions in the process of uranium underground leaching. Mining of Mineral Deposits, 15(4), 1-7. https://doi.org/10.33271/mining15.04.001
  45. Myrzakhmetov, B.А., Kuandykov, T.A., Mauletbekova, B.K., Balgayev, D.Y., & Nurkas, J.B. (2024). Multifunctional valve for the arrangement of submersible downhole pumps in downhole oil production. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(464), 156-168.https://doi.org/10.32014/2024.2518-170x.400
  46. Nazirova, A., Abdoldina, F., Aymahanov, M., Umirova, G., & Muhamedyev, R. (2016). An automated system for gravimetric monitoring of oil and gas deposits. Digital Transformation and Global Society, 585-595. https://doi.org/10.1007/978-3-319-49700-6_58
  47. Shakiyeva, T.V., Sassykova, L.R., Dzhatkambayeva, U.N., Khamlenko, A.A., Zhakirova, N.K., Batyrbayeva, A.A., Azhigulova, R.N., Kubekova, S.N., Zhaxibayeva, Z.M., Kozhaisakova, M.A., Sendilvelan, S., & Bhaskar, K. (2021). Optimization of the oxidative cracking of fuel oil on catalysts obtained from Kazakhstan raw materials. Rasayan Journal of Chemistry, 14(2), 1056-1071. https://doi.org/10.31788/RJC.2021.1426152
  48. Rabatuly, M., Myrzathan, S.A., Toshov, J.B., Nasimov, J., & Khamzaev, A. (2026). Views on drilling effectiveness and sampling estimation for solid ore minerals. Complex Use of Mineral Resources, 336(1), 5-14. https://doi.org/10.31643/2026/6445.01
  49. Sanakulov, K., Alikulov, S., Alimov, M., Yuldoshev, A., & Sharopov, K. (2024). Research of the movement of solutions in waterless dry horizons. E3S Web of Conferences, 525, 01001. https://doi.org/10.1051/e3sconf/202452501001
  50. Xie, Y., Wu, Y., Liu, X., Hao, M., Chen, Z., Waterhouse, G.I., & Ma, S. (2023). Rational design of cooperative chelating sites on covalent organic frameworks for highly selective uranium extraction from seawater. Cell Reports Physical Science, 4(1), 101220. https://doi.org/10.1016/j.xcrp.2022.101220
  51. Лицензия Creative Commons