Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Integration of stability factors A, B and C on the Mathews Stability Graph into a mining-level optimization algorithm

Danu Putra1, Tri Karian1, Budi Sulistianto2, Mohamad Nur Heriawan1

1Institut Teknologi Bandung, Bandung, Indonesia

2Universitas Trisakti, Jakarta Barat, Indonesia


Min. miner. depos. 2024, 18(3):42-51


https://doi.org/10.33271/mining18.03.042

Full text (PDF)


      ABSTRACT

      Purpose. This study aims to enhance the optimization approach by integrating stability analysis using Mathews Stability Graph into stope mining-level optimization algorithm.

      Methods. The programming language is employed to integrate the Mathews Stability Graph into the stope mining-level optimization algorithm at the preliminary optimization stage, providing dimensional constraints based on rock conditions. Algorithm validation is conducted using three scenarios reflecting rock conditions in the block model: fixed stope dimensions with a maxi-mum stope size, fixed stope dimensions with a minimum stope size, and variable stope dimensions based on the proposed algorithm. Additionally, to validate the stability of the stope in the optimization algorithm, the stability of each stope wall is confirmed by back plotting on a stability graph.

      Findings. The algorithm manages to create a stope design that complies both with geotechnical and economic aspects, based on the data provided in the synthetic block model.

      Originality. Optimal stope design is often determined by the stope’s economic parameter, whereas geotechnical variables, easily available in the block model, are neglected. The proposed algorithm aims to include stability analysis using the Mathews Stability Graph into the stope mining-level optimization algorithm.

      Practical implications. The method was successfully tested using data from a block model simulating the conditions of a real ore body in Indonesia. In addition, the method may be used by mine planners during the early stage of feasibility assessment.

      Keywords: stope optimization, Mathews Stability Graph, stope stability, stope layout, algorithm


      REFERENCES

  1. Dzimunya, N., Radhe, K., & William, C. (2018) Design and dimensioning of sublevel stoping for extraction of thin ore (less 12 m) at very deep level: A case study of Konkola copper mines (KCM), Zambia. Mathematical Modelling of Engineering Problems, International Information and Engineering Technology Association, 5, 27-32. https://doi.org/10.18280/mmep.050104
  2. Malaki, S. (2016). Block-cave extraction level and production scheduling optimization under grade uncertainty. PhD Thesis. Alberta, Canada: University of Alberta. https://doi.org/10.7939/R35H7C234
  3. Nikbin, V., Ataeepour, M., & Anani, A. (2020). Optimization of level intervals in steeply-dipping vein deposits: A two-step approach. Resources Policy, 69, 101847. https://doi.org/10.1016/j.resourpol.2020.101847
  4. Musingwini, C. (2010). Techno-economic optimization of level and raise spacing in Bushveld Complex platinum reef conventional breast mining. Journal of the Southern African Institute of Mining and Metallurgy, 110(8), 425-436.
  5. Sulistianto, B., Sulaiman, S.M., Wattimena, R.K., Ardianto, A., & Matsui, K. (2009). Determination of stope geometry in jointed rock mass at Pongkor Underground Gold Mine. International Journal of the JCRM, 5, 63-68. https://doi.org/10.11187/ijjcrm.5.63
  6. Karian, T., Shimada, H., Sasaoka, T., Wahyudi, S., Qian, D., & Sulistianto, B. (2016). Countermeasure method for stope instability in crown pillar area of cut and fill underground mine. International Journal of Geosciences, 7(3), 280-300. https://doi.org/10.4236/ijg.2016.73022
  7. Adoko, A.C., Vallejos, J., & Trueman, R. (2020). Stability assessment of underground mine stopes subjected to stress relaxation. Mining Technology: Transactions of the Institute of Mining and Metallurgy, 129(1), 30-39. https://doi.org/10.1080/25726668.2020.1721995
  8. Urli, V., & Esmaieli, K. (2016). A stability-economic model for an open stope to prevent dilution using the ore-skin design. International Journal of Rock Mechanics and Mining Sciences, 82, 71-82. https://doi.org/10.1016/J.IJRMMS.2015.12.001
  9. Mawdesley, C., Trueman, R., & Whiten, W.J. (2001). Extending the Mathews stability graph for open-stope design. Mining Technology, 110(1), 27-39. https://doi.org/10.1179/mnt.2001.110.1.27
  10. Pagé, P., Yang, P., Li, L., & Simon, R. (2021). A semi-empirical solution for estimating the elastic stresses around inclined mine stopes for the Mathews-Potvin stability analysis. Journal of the Southern African Institute of Mining and Metallurgy, 121(8), 405-414. https://doi.org/10.17159/2411-9717/690/2021
  11. Mortazavi, A., & Osserbay, B. (2022). The consolidated Mathews stability graph for open stope design. Geotechnical and Geological Engineering, 40, 2409-2424. https://doi.org/10.1007/S10706-021-02034-0
  12. Zhang, L., Hu, J.H., Wang, X.L., & Zhao, L. (2018). Optimization of stope structural parameters based on Mathews stability graph probability model. Advances in Civil Engineering, 2018, 754328. https://doi.org/10.1155/2018/1754328
  13. Kang, Z., Qing, W., Qiang, L., Yajing, Y., Xiang, Y., Junqiang, W., & Shuai, C. (2019). Optimization calculation of stope structure parameters based on Mathews stabilization graph method. Journal of Vibroengineering, 21, 1227-1239. https://doi.org/10.21595/jve.2019.20639
  14. Janiszewski, M., Pontow, S., & Rinne, M. (2021). Industry survey on the current state of stope design methods in the underground mining sector. Energies, 15, 240. https://doi.org/10.3390/en15010240
  15. Riddle, J.M. (1977). Dynamic programming solution of a block-caving mine layout. Proceedings of the 14th International Symposium on Application of Computers and Operations Research in the Minerals Industries, 767-780.
  16. Deraisme, J., De Fouquet, C., & Fraisse, H. (1984). Geostatistical orebody model computer optimization of profits from different underground mining methods. Proceedings of the 14th APCOM Symposium, 583-590.
  17. Ovanic, J., & Young, D.S. (1995). Economic optimisation of stope geometry using separable programming with special branch and bound techniques. Proceedings of the Third Canadian Conference on Computer Applications in the Mineral Industry, 35-129.
  18. Sandanayake, D.S.S., Topal, E., & Asad, M.W.A. (2015). Designing an optimal stope layout for underground mining based on a heuristic algorithm. International Journal of Mining Science and Technology, 25(5), 767-772. https://doi.org/10.1016/j.ijmst.2015.07.011
  19. Nikbin, V., Ataeepour, M., Shahriar, K., Pourrahimian, Y., & MirHassani, S.A. (2018). Stope boundary optimization: A mathematical model and efficient heuristics. Resources Policy, 62, 515-526. https://doi.org/10.1016/J.RESOURPOL.2018.10.007
  20. Bai, X., Marcotte, D., & Simon, R. (2014). A heuristic sublevel stope optimizer with multiple raises. Journal of the Southern African Institute of Mining and Metallurgy, 114, 427-734.
  21. Villalba Matamoros, M.E., & Kumral, M. (2017). Heuristic stope layout optimisation accounting for variable stope dimensions and dilution management. International Journal of Mining and Mineral Engineering, 8(1), 1-18. https://doi.org/10.1504/IJMME.2017.082680
  22. Sandanayake, D.S.S., Topal, E., & Ali Asad, M.W. (2015). A heuristic approach to optimal design of an underground mine stope layout. Applied Soft Computing, 30, 595-603. https://doi.org/10.1016/J.ASOC.2015.01.060
  23. Cheimanoff, N.M., Delica, E.P., & Mallet, J.L. (1989). GEOCAD: An alternative CAD and artificial intelligence tool that helps moving from geological resources to mineable reserves. Application of Computers and Operations Research in the Mineral Industry, 471-478.
  24. Alford, C. (1995). Optimisation in underground mine design. Handbook of Operations Research in Natural Resources, 561-577.
  25. Cawrse, I. (2001). Multiple pass floating stope process. Australasian Institute of Mining and Metallurgy Publication Series, 87-94.
  26. Ataee-Pour, M. (2004). Optimisation of stope limits using a heuristic approach. Mining Technology, 113(2), 123-128. https://doi.org/10.1179/037178404225004959
  27. Topal, E., & Sens, J. (2010). A new algorithm for stope boundary optimization. Journal of Coal Science and Engineering (China), 16, 113-119. https://doi.org/10.1007/s12404-010-0201-y
  28. Bai, X., Marcotte, D., & Simon, R. (2013). Underground stope optimization with network flow method. Computers and Geosciences, 52, 361-371. https://doi.org/10.1016/j.cageo.2012.10.019
  29. Sari, Y.A., & Kumral, M. (2021). Clustering-based iterative approach to stope layout optimization for sublevel stoping. The Journal of the Southern African Institute of Mining and Metallurgy, 121, 97-106. https://doi.org/10.17159/2411
  30. Sari, Y.A., & Kumral, M. (2021). Sublevel stope layout planning through a greedy heuristic approach based on dynamic programming. Journal of the Operational Research Society, 72(3), 554-563. https://doi.org/10.1080/01605682.2019.1700179
  31. Esmaeili, A., Hamidi, J.K., & Mousavi, A. (2023). Determination of sublevel stoping layout using a network flow algorithm and the MRMR classification system. Resources Policy, 80, 103265. https://doi.org/10.1016/J.RESOURPOL.2022.103265
  32. Putra, D., Karian, T., Sulistianto, B., & Heriawan, M.N. (2024). Integrating Mathews stability chart into the stope layout determination algorithm. Mining, Metallurgy & Exploration, 41, 1351-1364. https://doi.org/10.1007/s42461-024-00993-5
  33. Potvin, Y. (1988). Empirical open stope design in Canada. PhD Thesis. Vancouver, Canada: University of British Columbia. https://doi.org/10.14288/1.0081130
  34. Sari, Y.A., & Kumral, M. (2019). A planning approach for polymetallic mines using a sublevel stoping technique with pillars and ultimate stope limits. Engineering Optimization, 52(6), 932-944. https://doi.org/10.1080/0305215X.2019.1624739
  35. Prasetyo, E. (2010). Fractal model and classical block model in ore reserve estimation: A comparison. Riset Geologi Dan Pertambangan, 20, 119-130. https://doi.org/10.14203/risetgeotam2010.v20.39.
  36. Лицензия Creative Commons