Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Change in the qualitative composition of non-metallic mineral raw materials as a result of blasting operations

Pavlo Saik1, Oleksandr Dreshpak1, Valerii Ishkov1, Oleksii Cherniaiev1, Oleh Anisimov1

1Dnipro University of Technology, Dnipro, Ukraine


Min. miner. depos. 2024, 18(3):114-125


https://doi.org/10.33271/mining18.03.114

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to study the change in the qualitative composition of granite before and after blasting operations to determine its compliance with the criteria of marketable products.

      Methods. X-ray phase and X-ray structural research methods are used to study changes in the mineral composition of granites before and after blasting operations. To separate magnetic and non-magnetic fractions of the selected granite samples, a three-roller RST magnetic separator is used. X-ray phase research is conducted using a DRON-3 diffractometer. Additionally, an analysis of the unit cell dimensions of the quartz crystal lattice was conducted, and the dislocation density along the corresponding crystallographic planes was studied.

      Findings. It has been determined that after blasting operations, granite mass is redistributed from coarse fractions of 1-20 mm to small fractions of 0-1 mm with an increase in the latter by 4.2%. It has been found that the biotite content decrea-ses naturally and consistently, and the quartz content increases correspondingly in products in the following series: magnetic separator drum (90%, 2%) → lower roller (72%, 14%) → upper roller (55%, 31%) → non-magnetic product (48%, 34%) before blasting operations. Therefore, despite significant differences in the magnetic favorability of these two mineral phases, they are present in all magnetic separation products (with the exception of quartz in the non-magnetic product): magnetic separator drum → lower roller → upper roller.

      Originality. It has been established that along the crystallographic directions 101 and 211, the maximum gradient of dislocation density increase in the quartz crystal lattice in granite samples before blasting operations is observed during the transition from the lower roller product to the upper roller product, amounting to 1.55·1010 and 6.63·1010 cm-2, respectively. After blasting operations, in granite samples along the same directions, the maximum gradient of dislocation density increase is observed between the upper roller product and the non-magnetic product, amounting to 3.01·1010 and 4.67·1010cm-2. As a result of the thermodynamic impact of blasting operations, the weighted average dislocation density value along crystallographic planes 101 and 211 in the quartz crystal lattice increases by 47.21 and 25.72%, respectively.

      Practical implications. Understanding the quality characteristics of marketable products after blasting operations will contribute to optimizing the stages of further processing of non-metallic mineral raw materials (two-, three- or four-stage crushing) and expanding the scope of granite applications. This increases its competitiveness in the building materials market by reducing the costs for additional processing with a reduction in the labor intensity of the process.

      Keywords: non-metallic mineral raw materials, granite, magnetic separation, quartz, crystal lattice


      REFERENCES

  1. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91-102. https://doi.org/10.33271/mining17.04.091
  2. Shustov, O.O., Pavlychenko, A.V, Bielov, O.P., Adamchuk, A.A., & Borysovska, O.O. (2021). Calculation of the overburden ratio by the method of financial and mathematical averaged costs. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 30-36. https://doi.org/10.33271/nvngu/2021-5/030
  3. Kulikov, P., Aziukovskyi, O., Vahonova, O., Bondar, O., Akimova, L., & Akimov, O. (2022). Post-war economy of Ukraine: Innovation and investment development project. Economic Affairs (New Delhi), 67(5), 943-959. https://doi.org/10.46852/0424-2513.5.2022.30
  4. Lozhnikov, O., Sobko, B., & Pavlychenko, A. (2023). Technological solutions for increasing the efficiency of beneficiation processes at the mining of titanium-zirconium deposits. Inżynieria Mineralna, 1(1(51)), 61-68. https://doi.org/10.29227/IM-2023-01-07
  5. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics. https://doi.org/10.1007/s13563-024-00436-z
  6. Yermachenko, V. Bondarenko, D., Akimova, L., Karpa, M., Akimov, O., & Kalashnyk, N. (2023). Theory and practice of public management of smart infrastructure in the conditions of the digital society’ development: Socio-economic aspects. Economic Affairs (New Delhi), 68(1), 617-633. https://doi.org/10.46852/0424-2513.1.2023.29
  7. Krupnik, L., Yelemessov, K., Beisenov, B., & Baskanbayeva, D. (2020). Substantiation and process design to manufacture polymer-concrete transfer cases for mining machines. Mining of Mineral Deposits, 14(2), 103-109. https://doi.org/10.33271/mining14.02.103
  8. Korczak, K., Kochański, M., & Skoczkowski, T. (2022). Mitigation options for decarbonization of the non-metallic minerals industry and their impacts on costs, energy consumption and GHG emissions in the EU-Systematic literature review. Journal of Cleaner Production, 358, 132006. https://doi.org/10.1016/j.jclepro.2022.132006
  9. Yelemessov, K., Krupnik, L., Bortebayev, S., Beisenov, B., Baskanbayeva, D., & Igbayeva, A. (2020). Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web of Conferences, 168, 00018. https://doi.org/10.1051/e3sconf/202016800018
  10. Saukenova, I., Oliskevych, M., Taran, I., Toktamyssova, A., Aliakbarkyzy, D., & Pelo, R. (2022). Optimization of schedules for early garbage collection and disposal in the megapolis. Eastern-European Journal of Enterprise Technologies, 1(3(115)), 13-23. https://doi.org/10.15587/1729-4061.2022.251082
  11. Naumov, V., Bekmagambetova, L., Bitileuova, Z., Zhanbirov, Z., & Taran, I. (2022). Mixed fuzzy-logic and game-theoretical approach to justify vehicle models for servicing the public bus line. Communications – Scientific Letters of the University of Zilina, 24(1), A26-A34. https://doi.org/10.26552/com.c.2022.1.a26-a34
  12. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, 280, 08008. https://doi.org/10.1051/e3sconf/202128008008
  13. Sobko, B., Lozhnikov, O., & Drebenshtedt, C. (2020). Investigation of the influence of flooded bench hydraulic mining parameters on sludge pond formation in the pit residual space. E3S Web of Conferences, 168, 00037. https://doi.org/10.1051/e3sconf/202016800037
  14. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43
  15. Pivnyak, G., Bondarenko, V., Kovalevsэka, I., & Illiashov, M. (2013). Mining of mineral deposits. London, United Kingdom: CRC Press, 372 p. https://doi.org/10.1201/b16354
  16. Suopajärvi, L., Beland Lindahl, K., Eerola, T., & Poelzer, G. (2023). Social aspects of business risk in the mineral industry – Political, reputational, and local acceptability risks facing mineral exploration and mining. Mineral Economics, 36(2), 321-331. https://doi.org/10.1007/s13563-022-00345-z
  17. Sobko, B.Y., Lozhnikov, O.V., Haidin, A.M., & Laznikov, O.M. (2016). Substantiation of rational mining method at the Motronivskyi titanium-zirconium ore deposit exploration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 41-48.
  18. Prokopenko, O., Chechel, A., Koldovskiy, A., & Kldiashvili, M. (2024). Innovative models of green entrepreneurship: social impact on sustainable development of local economies. Economics Ecology Socium, 8(1), 89-111. https://doi.org/10.61954/2616-7107/2024.8.1-8
  19. Calzada Olvera, B., & Iizuka, M. (2024). The mining sector: profit-seeking strategies, innovation patterns, and commodity prices. Industrial and Corporate Change, 33(4), 986-1010. https://doi.org/10.1093/icc/dtad020
  20. Sun, L., & Hasi, M. (2024). Effects of mining sector FDI, environmental regulations, and economic complexity, on mineral resource dependency in selected OECD countries. Resources Policy, 89, 104651. https://doi.org/10.1016/j.resourpol.2024.104651
  21. An, Z., Zhao, Y., & Zhang, Y. (2023). Mineral exploration and the green transition: Opportunities and challenges for the mining industry. Resources Policy, 86, 104263. https://doi.org/10.1016/j.resourpol.2023.104263
  22. Badakhshan, N., Shahriar, K., Afraei, S., & Bakhtavar, E. (2023). Determining the environmental costs of mining projects: A comprehensive quantitative assessment. Resources Policy, 82, 103561. https://doi.org/10.1016/j.resourpol.2023.103561
  23. Saik, P., Cherniaiev, O., Anisimov, O., & Rysbekov, K. (2023). Substantiation of the direction for mining operations that develop under conditions of shear processes caused by hydrostatic pressure. Sustainability, 15(22), 15690. https://doi.org/10.3390/su152215690
  24. Nazarkevych, I., & Sych, O. (2023). Taxation as a tool of implementation of the EU Green Deal in Ukraine. Regional Science Policy & Practice, 15(1), 144-161. https://doi.org/10.1111/rsp3.12596
  25. Sladkowski, A., Utegenova, A., Elemesov, K., & Stolpovskikh, I. (2017). Determining of the rational capacity of a bunker for cyclic-and-continuous technology in quarries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 29-33.
  26. Moldabayev, S., Adamchuk, A., Sarybayev, N., & Shustov, A. (2019). Improvement of open cleaning-up schemes of border mineral reserves. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 19, 331-338. https://doi.org/10.5593/sgem2019/1.3/S03.042
  27. Yelemessov, K., Nauryzbayeva, D., Bortebayev, S., Baskanbayeva, D., & Chubenko, V. (2021). Efficiency of application of fiber concrete as a material for manufacturing bodies of centrifugal pumps. E3S Web of Conferences, 280, 07007. https://doi.org/10.1051/e3sconf/202128007007
  28. Chubenko, V.A., Khinotskaya, A., Yarosh, T., Saithareiev, L., & Baskanbayeva, D. (2022). Investigation of energy-power parameters of thin sheets rolling to improve energy efficiency. IOP Conference Series: Earth and Environmental Science, 1049, 012051. https://doi.org/10.1088/1755-1315/1049/1/012051
  29. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V. & Dychkovskyi, R. (2023). Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. Rudarsko Geolosko Naftni Zbornik, 38(5), 49-60. https://doi.org/10.17794/rgn.2023.5.5
  30. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko Geolosko Naftni Zbornik, 37(5), 169-180. https://doi.org/10.17794/rgn.2022.5.14
  31. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P.T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, 280, 01003. https://doi.org/10.1051/e3sconf/202128001003
  32. Moldabayev, S.K., Adamchuk, A.A., Toktarov, A.A., Aben, E., & Shustov O.O. (2020). Approbation of the technology of efficient application of excavator-automobile complexes in the deep open mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 30-38. https://doi.org/10.33271/nvngu/2020-4/030
  33. Abdullayev, S., Tokmurzina, N., & Bakyt, G. (2016). The determination of admissible speed of locomotives on the railway tracks of the Republic of Kazakhstan. Transport Problems, 11(1), 61-68. https://doi.org/10.20858/tp.2016.11.1
  34. Imasheva, G., Abdullayev, S., Tokmurzina, N., Adilova, N., & Bakyt, G. (2018). Prospects for the use of gondola cars on bogies of model ZK1 in the organization of heavy freight traffic in the Republic of Kazakhstan. Mechanics, 24(1), 32-36.
  35. Sładkowski, A., Utegenova, A., Kolga, A.D., Gavrishev, S.E., Stolpovskikh, I., & Taran, I. (2019). Improving the efficiency of using dump trucks under conditions of career at open mining works. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 36-42. https://doi.org/10.29202/nvngu/2019-2/8
  36. Taran, I., & Klymenko, I. (2018). Analysis of hydrostatic mechanical transmission efficiency in the process of wheeled vehicle braking. Transport Problems, 12(SE), 45-56. https://doi.org/10.20858/tp.2017.12.se.4
  37. Saik, P., Rysbekov, K., Kassymkanova, K. K., Lozynskyi, V., Kyrgizbayeva, G., Moldabayev, S., Babets, D., & Salkynov, A. (2024). Investigation of the rock mass state in the near-wall part of the quarry and its stability management. Frontiers in Earth Science, 12, 1395418. https://doi.org/10.3389/feart.2024.1395418
  38. Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rosk mass assessment for man-made disaster risk management. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 403-409. https://doi.org/10.1201/b19901-70
  39. Sadykov, B.B., Baygurin, Zh.D., Altayeva, A.A., Kozhaev, Zh.Т., & Stelling, W. (2019). New approach to zone division of surface of the deposit by the degree of sinkhole risk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 31-35. https://doi.org/10.29202/nvngu/2019-6/5
  40. Imansakipova, B.B., Baygurin, Z.D., Soltabaeva, S.T., Milev, I., & Miletenko, I.V. (2014). Causes of strain of buildings and structures in areas of abnormal stress and surveillance terrestrial laser scanners. Life Science Journal, 11(9s), 165-170.
  41. Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The features of sports complex ‘Sunkar’ monitoring by terrestrial laser scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 105-110. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-105-2023
  42. Kakimzhanov, Y., Kozhaev, Z., & Bektemirova, S. (2015). Technique of creation interactive visualization of 3D maps within the University Campus. 15th International Multidisciplinary Scientific GeoConfe-rence, Informatics, Geoinformatics and Remote Sensing, 845-850. https://doi.org/10.5593/sgem2015/b21/s8.108
  43. Takhanov, D., Balpanova, M., Kenetayeva, A., Rabatuly, M., Zholdybayeva, G., & Usupayev, S. (2023). Risk assessments for rockfalls taking into account the structure of the rock mass. E3S Web of Conferences, 44, 04012. https://doi.org/10.1051/e3sconf/202344304012
  44. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901
  45. Serdaliyev, Y., Iskakov, Y., & Alibayev, A. (2024). Control of blast parameters for high-quality breaking of thin slope ore bodies. Mining of Mineral Deposits, 18(2), 49-59. https://doi.org/10.33271/mining18.02.049
  46. Petlovanyi, M., Sai, K., Malashkevych, D., Popovych, V., & Khorolskyi, A. (2023). Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, 1156(1), 012007. https://doi.org/10.1088/1755-1315/1156/1/012007
  47. Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determining the performance of explosives for blasting management. Rudarsko Geolosko Naftni Zbornik, 38(3), 19-28. https://doi.org/10.17794/rgn.2023.3.2
  48. Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655-667. https://doi.org/10.46544/ams.v28i3.10
  49. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V. & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 37-41. https://doi.org/10.29202/nvngu/2019-1/20
  50. Veselovska, N.R., Posviatenko, E.K., Solona O.V., & Budiak, R.V. (2018). Metody doslidzhennia fizyko-mekhanichnykh vlastyvostei materialiv. Vinytsia, Ukraina: VNAU, 147 s.
  51. Danylchenko, S.M., Kuznetsov, V.M., & Protsenko, I.Yu. (2019). Renthenodyfraktsiini metody doslidzhennia krystalichnykh materialiv. Sumy, Ukraina: SDU, 147 s.
  52. Лицензия Creative Commons