Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Control of blast parameters for high-quality breaking of thin slope ore bodies

Yerdulla Serdaliyev1, Yerkin Iskakov1, Azamat Alibayev1

1Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2024, 18(2):49-59


https://doi.org/10.33271/mining18.02.049

Full text (PDF)


      ABSTRACT

      Purpose. The research is aimed at substantiation of the effective method for mining thin slope ore bodies occurring in soft unstable host rocks by optimizing the breaking process, while determining the patterns of blast energy impact on the disturbed mass by explosive charges with controllable density, taking into account the geomechanical rock mass state.

      Methods. The research uses a comprehensive approach, including analysis of literature sources, practical experience of mining the slope ore bodies in difficult mining-geological conditions, modeling of the energy characteristics of blasts and wave action on the mass using software, as well as conducting experimental-industrial tests in the Akbakai mine.

      Findings. An innovative method for effective and safe ore mining from thin slope ore deposits in masses with weakened host rocks has been substantiated and developed. It implies the use of a new construction and location in the blast-holes of a charge consisting of mixed low-density explosives with widely controllable characteristics and with which the blast-holes are charged in two layers with different densities of explosives and detonated at different delay intervals. The optimum delay intervals have been determined, which improve the conditions for controlling the blast energy by changing the direction of the blast action vector towards the newly outcropped surfaces formed in the rock mass after the blasting the first stage charges. The main factors influencing the ore delivery range when mining thin slope ore bodies with blast delivery system have been revealed and methods for increasing this process efficiency are proposed.

      Originality. New parameters of drilling and blasting operations have been determined for the conditions of mining thin slope ore bodies of the Akbakai deposit: a rational charge construction with controllable blast characteristics has been deve-loped; the optimum range of blast-hole charging density with mixed low-density explosives and delay intervals have been substantiated; a new exponential dependence of the ore delivery range on the specific blasting agent consumption and the angle of the ore body occurrence has been revealed.

      Practical implications. Practical significance is in increasing the efficiency of blast breaking of minerals, improving the quality of blast delivery of broken ore to loading sites while maintaining the host rock mass continuity and reducing the ore mass dilution, eliminating the formation of large-sized pieces that complicate the blast delivery of the broken ore.

      Keywords: deposit, mining, dilution, loss, blast construction, blast energy, blasting agent, charge density


      REFERENCES

  1. Hou, D., Xu, M., Li, X., Wang, J., Wang, M., & Li, S. (2023). Optimization of mining methods for deep orebody of large phosphate mines. Frontiers in Built Environment, 9, 1282684. https://doi.org/10.3389/fbuil.2023.1282684
  2. Bekbassarov, S., Soltabaeva, S., Daurenbekova, A., & Ormanbekova, A. (2015). “Green” economy in mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 431-434. https://doi.org/10.1201/b19901-75
  3. Turegeldinova, A.Z. (2014). Analysis of the effectiveness of benefit package structure. Actual Problems of Economics, 151, 383.
  4. Vishwakarma, A.K., Himanshu, V.K., & Dey, K. (2024). Evaluation of optimum burden for the excavation of narrow vein ore deposits using numerical simulation. Rock Mechanics and Rock Engineering, 57(2), 945-960. https://doi.org/10.1007/s00603-023-03596-6
  5. Abdellah, W.R.E., Hefni, M.A., & Ahmed, H.M. (2020). Factors influencing stope hanging wall stability and ore dilution in narrow-vein deposits: Part 1. Geotechnical and Geological Engineering, 38, 1451-1470. https://doi.org/10.1007/s10706-019-01102-w
  6. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A & Jangulova, G. (2023). Geophysical studies of rock distortion in mining operations in complex geological conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 57-62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023
  7. Abdellah, W. (2022). Effects of a pillarless, center-out stoping pattern on haulage drift performance and ore tonnage at risk. Rudarsko Geolosko Naftni Zbornik, 37(2), 87-96. https://doi.org/10.17794/rgn.2022.2.8
  8. Begalinov, A. (2022). Razrabotka strukturnoy modeli i tekhniko-tekhnologicheskikh sposobov podderzhaniya geosistemy “massiv-tekhnologiya-podzemnoe sooruzhenie” pri podzemnoy razrabotke zolotorudnykh mestorozhdeniy (Akbakay, Bakyrchik, Maykain) i kompleksnoy mekhanizatsii vedeniya gornykh rabot pri osvoenii grupp mestorozhdeniy zolota (Akbakay). Otchet o NIR #0112RK02709. Almaty, Kazakhstan, 158 s.
  9. Serdaliyev, Y., Iskakov, Y., Bakhramov, B., & Amanzholov, D. (2022). Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values. Mining of Mineral Deposits, 16(4), 56-64. https://doi.org/10.33271/mining16.04.056
  10. Begalinov, A., Serdaliyev, Y., Abshayakov, E., Bakhramov, B., & Baigenzhenov, O. (2015). Extraction technology of fine vein gold ores. Metallurgical and Mining Industry, 7(4), 312-320.
  11. Huo, X., Shi, X., Qiu, X., Zhou, J., Gou, Y., Yu, Z., & Ke, W. (2020). Rock damage control for large-diameter-hole lateral blasting excavation based on charge structure optimization. Tunnelling and Underground Space Technology, 106, 103569. https://doi.org/10.1016/j.tust.2020.103569
  12. Lu, A., Dou, L., Bai, J., Chai, Y., Zhou, K., Kan, J., & Song, S. (2021). Mechanism of hard‐roof rock burst control by the deep‐hole blasting: numerical study based on particle flow. Shock and Vibration, 2021(1), 9527956. https://doi.org/10.1155/2021/9527956
  13. Liu, Z., Ma, Z., Liu, K., Zhao, S., & Wang, Y. (2023). Coupled CEL-FDEM modeling of rock failure induced by high-pressure water jet. Engineering Fracture Mechanics, 277, 108958. https://doi.org/10.1016/j.engfracmech.2022.108958
  14. Petlovanyi, M. (2016). Influence of configuration chambers on the formation of stress in multi-modulus mass. Mining of Mineral Deposits, 10(2), 48-54. https://doi.org/10.15407/mining10.02.048
  15. Pysmennyi, S., Chukharev, S., Kourouma, I. K., Kalinichenko, V., & Matsui, A. (2023). Development of technologies for mining ores with instable hanging wall rocks. Inżynieria Mineralna, 1(1(51)), 103-112. https://doi.org/10.29227/IM-2023-01-13
  16. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-31
  17. Pysmennyi, S., Chukharev, S., Peremetchyk, A., Shvaher, N., Fedorenko, S., & Tien, V. T. (2023, October). Enhancement of the technology of caved ore drawing from the ore deposit footwall “triangle”. IOP Conference Series: Earth and Environmental Science, 1254(1), 012065. https://doi.org/10.1088/1755-1315/1254/1/012065
  18. Gao, R., Kuang, T., Meng, X., & Huo, B. (2021). Effects of ground fracturing with horizontal fracture plane on rock breakage characteristics and mine pressure control. Rock Mechanics and Rock Engineering, 54(6), 3229-3243. https://doi.org/10.1007/s00603-020-02294-x
  19. Zhu, Q., Li, T., Lou, Q., Liu, Y., Li, C., & Chen, J. (2023). Stability mechanisms of soft rock mining roadways through roof cutting and pressure relief: An exploratory model experiment. Frontiers in Ecology and Evolution, 11, 1237894. https://doi.org/10.3389/fevo.2023.1237894
  20. Moruzi, G.A., & Pasieka, A.R. (1964). Evaluation of a blasting technique for destressing ground subject to rockbursting. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-64.
  21. Pysmennyi, S., Chukharev, S., Peremetchy, A., Fedorenko, S., & Matsui, A. (2023). Study of stress concentration on the contour of underground mine workings. Inżynieria Mineralna, 1(1(51)), 69-78. https://doi.org/10.29227/IM-2023-01-08
  22. Khomyakov, V.A., Iskakov, E.E., & Serdaliev, E.T. (2013). Investigation of gravelly soil during underground construction in Almaty. Soil Mechanics and Foundation Engineering, 50(4), 171-178. https://doi.org/10.1007/s11204-013-9230-z
  23. Chen, J., Shi, K., Pu, Y., Apel, D. B., Zhang, C., Zuo, Y., & Song, L. (2023). Study on instability fracture and simulation of surrounding rock induced by fault activation under mining influence. Rock Mechanics Bulletin, 2(2), 100037. https://doi.org/10.1016/j.rockmb.2023.100037
  24. Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655-667. https://doi.org/10.46544/ams.v28i3.10
  25. Ercins, S. (2024). Vibration prediction with a method based on the absorption property of blast-induced seismic waves: A case study. Open Geosciences, 16(1), 20220633. https://doi.org/10.1515/geo-2022-0633
  26. Rysbekov, K.B., Toktarov, A.A., & Kalybekov, T. (2021). Technique for justifying the amount of the redundant developed reserves considering the content of metal in the mining ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076
  27. Begalinov, A.B., Serdaliev, E.T., Iskakov, E.E., & Amanzholov, D.B. (2013). Shock blasting of ore stockpiles by low-density explosive charges. Journal of Mining Science, 49(6), 926-931. https://doi.org/10.1134/S1062739149060129
  28. Serdaliyev, Y.T., Iskakov, Y.E., Bakhramov, B.A., & Amanzholov, D.B. (2024). Eksperimentalnoe issledovanie vozdeystviya vzryvnykh rabot na ustoychivost gornykh vyrabotok. Gornyy Zurnal Kazahstana, 1, 4-10.
  29. Serdaliyev, Y.T., Iskakov, Y.E., Bakhramov, B.A., & Amanzholov, D.B. (2023) Issledovanie seysmicheskogo vozdeystviya vzryva na massiv pri otrabotke malomoshchnykh rudnykh zalezhey. Gornyy Zurnal Kazahstana, 9, 8-10.
  30. Serdaliyev, Y.T., Iskakov, Y.E., Bakhramov, B.A., & Amanzholov, D.B. (2023). Obosnovanie parametrov krepleniya krovli kamer otrabatyvaemykh malomoshchnykh zalezhey kanatnymi ankerami. Gornyy Zurnal Kazahstana, 1, 48-52.
  31. Bondarenko, V., Simanovich, G., Laguta, A., & Cherednychenko, Y. (2011). Mechanism of force interaction of “rock bolt-rocks” system. Technical and Geoinformational Systems in Mining, 7-12. https://doi.org/10.1201/b11586-4
  32. Serdaliyev, Y., Iskakov, Y., & Amanzholov, D. (2023). Selection of the optimal composition and analysis of the detonating characteristics of low-density mixed explosives applied to break thin ore bodies. Mining of Mineral Deposits, 17(4), 53-60. https://doi.org/10.33271/mining17.04.053
  33. Latham, J.P., & Lu, P. (1999). Development of an assessment system for the blastability of rock masses. International Journal of Rock Mechanics and Mining Sciences, 36(1), 41-55. https://doi.org/10.1016/S0148-9062(98)00175-2
  34. Navarro, J., Seidl, T., Hartlieb, P., Sanchidrián, J. A., Segarra, P., Couceiro, P., & Godoy, C. (2021). Blastability and ore grade assessment from drill monitoring for open pit applications. Rock Mechanics and Rock Engineering, 54, 3209-3228. https://doi.org/10.1007/s00603-020-02354-2
  35. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901
  36. Azimi, Y., Osanloo, M., Aakbarpour-Shirazi, M., & Bazzazi, A.A. (2010). Prediction of the blastability designation of rock masses using fuzzy sets. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1126-1140. https://doi.org/10.1016/j.ijrmms.2010.06.016
  37. Rakishev, B., Rakisheva, Z.B., Auezova, A.M., & Orynbay, A.A. (2020). Digital hierarchical model of lumpiness of blasted rock mass. Mining Technology, 129(4), 228-237. https://doi.org/10.1080/25726668.2020.1838775
  38. Rakishev, B.R., Shampikova, A.H., & Kazangapov, A.E. (2016). Geometric features of different parts lost in the collapse of the blas-ted rock. International Journal of Applied Engineering Research, 11(21), 10447-10453.
  39. Yussupov, K., Myrzakhmetov, S., Aben, K., Nehrii, S., & Nehrii, T. (2021). Optimization of the drilling-and-blasting process to improve fragmentation by creating of a preliminary stress in a block. E3S Web of Conferences, 280, 08015. https://doi.org/10.1051/e3sconf/202128008015
  40. Kabetenov, T. (2014). Sovershenstvovanie skvazhinnoy otboyki pri razrabotke naklonnykh i krutopadayushchikh rudnykh tel maloy i sredney moshchnosti. Almaty, Kazakhstan: Ekonomika, 192 s.
  41. Sotoudeh, F., Nehring, M., Kizil, M., Knights, P., & Mousavi, A. (2020). Production scheduling optimisation for sublevel stoping mines using mathematical programming: A review of literature and future directions. Resources Policy, 68, 101809. https://doi.org/10.1016/j.resourpol.2020.101809
  42. Choi, Y., Baek, J., & Park, S. (2020). Review of GIS-based applications for mining: Planning, operation, and environmental management. Applied Sciences, 10(7), 2266. https://doi.org/10.3390/app10072266
  43. Jung, D., & Choi, Y. (2021). Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation. Minerals, 11(2), 148. https://doi.org/10.3390/min11020148
  44. Tambiev, P.G. (2017). Razvitie vzryvnogo dela v Respublike Kazakhstan. Almaty, Kazakhstan: ART DO, 424 s.
  45. Nifadyev, V.I., & Kalinina, N.M. (1988). Nizkoplotnye i sverkhnizkoplotnye vzryvchatye smesi. Bishkek, Kyrgyzstan: Ilim, 188 s.
  46. Tambiev, P.G. (2015). Izgotovlenie vzryvchatykh veshchestv iz nevzryvchatykh komponentov i kompleksnaya mekhanizatsiya vzryvnykh rabot. Almaty, Kazakhstan: KITs TOO, 392 s.
  47. Лицензия Creative Commons