Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Dualistic effect of the deformation of protective structures made of broken rock in mine workings under static load

Daria Chepiga1, Serhii Podkopaiev1, Volodymyr Gogo1, Oleksandr Shashenko2, Oleksandr Skobenko2, Oleksandr Demchenko3, Yevgen Podkopayev4

1Donetsk National Technical University, Lutsk, Ukraine

2Dnipro University of Technology, Dnipro, Ukraine

3SE “Ukrshachthidrozakhyst”, Kyiv, Ukraine

4LLC MS YELTEKO, Kostyantynivka, Ukraine


Min. miner. depos. 2024, 18(2):122-131


https://doi.org/10.33271/mining18.02.122

Full text (PDF)


      ABSTRACT

      Purpose is to reveal physical essence of the dualistic (double) nature of deformation effects and their influence on the mechanical properties of protective structures made of broken rock while unloading coal-bearing mass to ensure stability of side rocks and operational conditions of the development mine working within the working areas of coal mines.

      Methods. The deformation properties of protective structures made of broken rock was modeled on experimental samples during their static load in terms of uniaxial compression with the possibility of lateral expansion of the original material or its compressive stress.

      Findings. A dualistic effect of deformations for the conditions of uniaxial compression of protective structures was revealed. Under the effect, a complex transformation of volume and shape occurs in the structures caused by the process of relative changes in the backfill material volume. The observed phenomenon occurs within the range of 0.12 ≤δV ≤ 0.32 and the values of the compaction coefficient of broken rock being 1.13≤k con. ≤ 1.47, depending on the granulometric composition of the source material and its bulk density. It was established that under conditions when broken rock is compressed, there is an effect of forming the bearing capacity of protective structures, which is observed when a relative change in the volume of backfill material is 0.14 ≤ δV ≤ 0.38, and its compaction factor reaches 1.16 ≤ kcon. ≤ 1.59. Depending on the homogeneity degree of the backfill material of protective structures, when comparing the values of kcon., a dualistic (double) effect is manifested in the difference of deformation characteristics of broken rock under uniaxial and compressive stress, reaching two or more times.

      Originality. A regularity was established that determines the relationship between compaction factor kcon. of broken rock and a relative change in the volume (δV) of backfill material, which makes it possible to evaluate bearing capacity of protective structures, being under static load in a stress-strain state.

      Practical implications. The research results can be used to substantiate the selection of a method to protect development mine working with flexible supports made of broken rock. To clarify the assessment of bearing capacity of such structures, it is advisable to carry out specific field studies in mine conditions.

      Keywords: protective structure, mine working, static load, deformation, rock, bearing capacity


      REFERENCES

  1. Buzilo, V.I., Sulaev, V.I., & Koshka, A.G. (2013). Tehnolohiya otrabotki tonkikh plastov s zakladkoy vyrabotannogo prostranstva. Donetsk: NGU.
  2. Malashkevych, D.S. (2021). Rozrobka tekhnolohichnih skhem se-lektyvnoho vidpratsiuvannia plastiv iz zalyshenniam porody u vyroblenomu prostori. Dnipro: Lizunov Press.
  3. Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54-66. https://doi.org/10.33271/mining18.01.054
  4. Witthaus, H., Gutberlet, K., & Junker, M. (2013). Stowing on longwall faces on the basis of experience acquired in the German coal mining industry. Mining Report, 75(6). https://doi.org/10.1002/mire.201300422
  5. Huang, J., Tian, C., Xing, L., Bian, Z., & Miao, X. (2017). Green and sustainable mining underground coal mine fully mechanized solid dense stowing-mining method. Sustainability, 9(8), 1418. https://doi.org/10.3390/su9081418
  6. Zhou, N., Jiang, H.Q., & Zhang, J.X. (2013). Application of solid backfill mining techniques for coal mine under embankment dam. Mining Technology, 122(4), 228-234. https://doi.org/10.1179/1743286313Y.0000000042
  7. Zhang, Q., Zhang, J., Guo, S., Gao, R., & Li, W. (2015). Design and application of solid, dense backfill advanced mining technology with two pre-driving entries. International Journal of Mining Science and Technology, 25(1), 127-132. https://doi.org/10.1016/j.ijmst.2014.12.008
  8. Malashkevych, D., Sotskov, V., Medyanyk, V., & Prykhodchenko, D. (2018). Integrated evaluation of the worked-out area partial backfill effect of stress-strain state of coal-bearing rock mass. Solid State Phenomena, 277, 213-220. https://doi.org/10.4028/www.scientific.net/ssp.277.213
  9. Jarkovich, A.I. (2015). Povyshenie ustojchivosti vyrabotok putem zakladki vyrabotannogo prostranstva. Development of Deposits: Collection of Scientific Papers, 9, 141-147.
  10. Bondarenko, V., Symanovych, H., Barabash, M., Husiev, O., & Salieiev, I. (2020). Determining patterns of the geomechanical factors influence on the fastening system loading in the preparatory mine workings. Mining of Mineral Deposits, 14(1), 44-50. https://doi.org/10.33271/mining14.01.044
  11. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Salieiev, I. (2021). Principles for certain geomechanics problems solution during overworking of mine workings. E3S Web of Conferences, 280, 01007. https://doi.org/10.1051/e3sconf/202128001007
  12. Tkachuk, O., Chepiga, D., Pakhomov, S., Volkov, S., Liashok, Y., Bachurina, Y., & Podkopaiev, S. (2023). Evaluation of the effectiveness of secondary support of haulage drifts based on a comparative analysis of the deformation characteristics of protective structures. Eastern-European Journal of Enterprise Technologies, 2(1(122)), 73-81. https://doi.org/10.15587/1729-4061.2023.272454
  13. Chepiga, D., Bessarab, I., Hnatiuk, V., Tkachuk, O., Kipko, O., & Podkopaiev, S. (2023) Deformation as a process to transform shape and volume of protective structures of the development mine workings during coal-rock mass off-loading. Mining of Mineral Deposits, 4(17), 1-11. https://doi.org/10.33271/mining17.04.001
  14. Petlovanyi, M., Malashkevych, D., Sai, K., & Zubko, S. (2020). Research into balance of rocks and underground cavities formation in the coal mine flowsheet when mining thin seams. Mining of Mineral Deposits, 14(4), 66-81. https://doi.org/10.33271/mining14.04
  15. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 45-48. https://doi.org/10.1201/b16354-10
  16. Nasonov, I.D. (1978). Modelirovanie gornykh protsessov. Moskva, Rossiya: Nedra, 256 s.
  17. Podkopaev, S.V., Gavrish, N.N., Deglin, B.M., Kamenec, V.I., & Zinchenko, S.A. (2012). Laboratornyi praktykum z kursu “Mekhanika gornyh porod”. Donetsk, Ukraina: DonNTU.
  18. Shashenko, O.M., Pustovoitenko, V.P., & Sdvyzhkova, O.O. (2016). Geomehanika. Kyiv, Ukraina: Novyi druk.
  19. Podkopaiev, S., Gogo, V., Yefremov, I., Kipko, O., Iordanov, I., & Simonova, Yu. (2019). Phenomena of stability of the coal seam roof with a yielding support. Mining of Mineral Deposits, 13(4), 28-41. https://doi.org/10.33271/mining13.04.028
  20. Czichos, H. (2013). Physics of failure. Handbook of Technical Diagnostics, 23-24.
  21. Hnatyuk, V., & Kipko, O. (2023). Doslidzhennia protsesiv deformuvannia okhoronnykh sporud pidhotovchykh hirnychykh vyrobok. Naukovyi Visnyk DonNTU, 2(11), 70-80.
  22. Iordanov, I., Novikova, Yu., Simonova, Yu., Yefremov, O., Podkopayev, Y. & Korol, A. (2020). Experimental characteristics for deformation of backfill mass. Mining of Mineral Deposits, 14(3), 119-127. https://doi.org/10.33271/mining14.03.119
  23. Bachurin, L.L., Iordanov, I.V., Simonova, Y.I., Korol’, A.V., Podkopaev, Ye.S., & Kayun, O.P. (2020). Eksperymentalni doslidzhennia deformaciinykh kharakterystyk zakladalnykh masyviv. Tekhnichna Inzheneriya, 2(86), 136-149. https://doi.org/10.26642/ten-2020-2(86)-136-149
  24. Meshkov, Yu.Ya. (2001). Koncepciya kriticheskoy plotnosti energii v k razrusheniya tverdykh tel. Uspekhi Fiziki Metallov, 2, 7-50.
  25. Stupishin, L.U. (2014). Variational criteria for critical levels of internal energy of a deformable solid. Applied Mechanics and Materials, 578-579, 1584-1587. https://doi.org/10.4028/www.scienti-fic.net/AMM.578-579.1584
  26. Baranovskyi, E.M., & Moisyshyn, V.M. (2005). Enerhetychni teorii mitsnosti ta yikh vykorystannia v mekhanitsi hirskykhkh porid. Naukovyi Visnyk Natsionalnoho Tekhnichnoho Universytetu Nafty i Hazu, 2(11), 26-32
  27. Лицензия Creative Commons