Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Modelling mineral reserve assessment using discrete kriging methods

Yevhenii Malanchuk1, Viktor Moshynskyi1, Andriy Khrystyuk1, Zinovii Malanchuk1, Valerii Korniyenko1, Ruslan Zhomyruk1

1National University of Water and Environmental Engineering, Rivne, Ukraine


Min. miner. depos. 2024, 18(1):89-98


https://doi.org/10.33271/mining18.01.089

Full text (PDF)


      ABSTRACT

      Purpose.Develop an efficient assessment model for amber placers within the analyzed block involving its content in the samples taken inside the block as well as out of it.

      Methods. To obtain results, a complex of scientific procedures has been applied consisting of system analysis; generalization; mathematical statistics; mathematical, perfect, and psychical modelling; field experiment; and forecasting.

      Findings. Methods to assess amber placer reserves have been substantiated. The potential of discrete kriging has been involved inclusive of the search for the best evaluation of amber content within the analyzed block taking into consideration the mineral percentage in the samples taken inside the block as well as out of it.

      Originality. The research has helped understood that the discrete kriging results help assess average amber content within the square and curvilinear zones tending to the central well (in terms of amber percentage) both in the central well and in wells of the first and second contact zones.

      Practical implications.Identification of the most efficient technique, assessing amber reserves, improves forecasting reliability of the resources with minimal cost.

      Keywords: model, amber, efficiency, assessment, kriging, placer, well, mineral


      REFERENCES

  1. Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29, 3415-3424. https://doi.org/10.1007/s11053-020-09700-9
  2. Zeng, X., Ali, S.H., Tian, J., & Li, J. (2020). Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nature communications, 11(1), 1544. https://doi.org/10.1038/s41467-020-15246-4
  3. Heštera, H., Pahernik, M., Zelić, B.K., & Maljković, M.M. (2023). The Unified Soil Classification System Mapping of the Pannonian Basin in Croatia using Multinominal Logistic Regression and Inverse Distance Weighting Interpolation. Rudarsko-Geolosko-Naftni Zbornik, 38(3), 147-159. https://doi.org/10.17794/rgn.2023.3.12
  4. Rysbekov, K., Toktarov, A., Kalybekov, T., Moldabayev, S., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, 168, 00016. https://doi.org/10.1051/e3sconf/202016800016
  5. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https://doi.org/10.15407/mining11.02.001
  6. Remezova, O., Komsky, M., Komliev, O., Chukharev, S., & Vasylenko, S. (2023). Study of valuable impurities of ore-forming titanium minerals in the Ukraine. Inżynieria Mineralna, 1(1(51)), 189-194. https://doi.org/10.29227/IM-2023-01-24
  7. Petlovanyi, M., Saik, P., Lozynskyi, V., Sai, K., & Cherniaiev, O. (2023). Substantiating and assessing the stability of the underground system parameters for the sawn limestone mining: Case study of the Nova Odesa Deposit, Ukraine. Inżynieria Mineralna, 1(1(51)), 79-89. https://doi.org/10.29227/IM-2023-01-10
  8. Shustov, O.O., Bielov, O.P., Perkova, T.I., & Adamchuk, A.A. (2018). Substantiation of the ways to use lignite concerning the integrated development of lignite deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 5-18. https://doi.org/10.29202/nvngu/2018-3/6
  9. Pysmennyi, S., Fedko, M., Chukharev, S., Sakhno, I., Moraru, R., & Panayotov, V. (2023). Enhancement of the rock mass quality in underground iron ore mining through application of resource-saving technologies. IOP Conference Series: Earth and Environmental Science, 1156(1), 012029. https://doi.org/10.1088/1755-1315/1156/1/012029
  10. Baimukhanbetova, E., Onaltayev, D., Daumova, G., Amralinova, B., & Amangeldiyev, A. (2020). Improvement of informational technologies in ecology. E3S Web of Conferences, 159, 01008. https://doi.org/10.1051/e3sconf/202015901008
  11. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A., & Jangulova, G. (2023). Geophysical studies of rock distortion in mining operations in complex geological conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 57-62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023
  12. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, 10, 878977. https://doi.org/10.3389/fenvs.2022.878977
  13. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P. T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, 280, 01003. https://doi.org/10.1051/e3sconf/202128001003
  14. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p. https://doi.org/10.1201/b19901
  15. Mamanov, Y., Kembayev, M., & Assubayeva, S. (2023). Prospects of computer simulation geological structures for forecasting mineral resources. International Multidisciplinary Scientific GeoConference: SGEM, 23(1.1), 109-114. https://doi.org/10.5593/sgem2023/1.1/s01.14
  16. Baibatsha, A., Mamanov, E., & Kembayev, M. (2019). Prospects of remote sensing for mineral deposits prediction in Kazakhstan. Arabian Journal of Geosciences, 339-341. https://doi.org/10.1007/978-3-030-72896-0_77
  17. Oliinyk, T., Yefimenko, S., Abdrakhmanova, Z., Kan, A., & Issatayeva, F. (2020). Online ore monitoring using EDXRF method on process conveyor belts at Kazakhmys Corporation LLC operations. E3S Web of Conferences, 166, 02010. https://doi.org/10.1051/e3sconf/202016602010
  18. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, 10, 852591. https://doi.org/10.3389/fenvs.2022.852591
  19. Perkovsky, E.E. (2017). Rovno amber caddisfl ies (Insecta, Trichoptera) from different localities, with information about three new sites. Vestnik Zoologii, 51(1), 15-22. https://doi.org/10.1515/vzoo-2017-0003
  20. Malanchuk, Y., Korniienko, V., Malanchuk, L., & Zaiets, V. (2020). Research into the moisture influence on physical-chemical tuff-stone characteristics in basalt quarries of the Rivne-Volyn region. E3S Web of Conferences, 211, 01036. https://doi.org/10.1051/e3sconf/202020101036
  21. Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern technologies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31.
  22. Hnatushenko, V.V., Mozhovyi, D.K., & Vasyliev, V.V. (2017). Satellite monitoring of deforestation as a result of mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 94-99.
  23. Gnatushenko, V.V. (2003). The use of geometrical methods in multispectral image processing. Journal of Automation and Information Sciences, 35(12), 1-8. https://doi.org/10.1615/JAutomatInfScien.v35.i12.10
  24. Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2, 3-10. https://doi.org/10.5593/sgem2016/b22/s09.001
  25. Abedi, A., Bahrami, A., Chehreghani, S., Ghadri, M., & Kazemi, F. (2022). Mapping specular hematite ore beneficiation routes to industrial application standards. Rudarsko-Geolosko-Naftni Zbornik, 37(1), 1-9. https://doi.org/10.17794/rgn.2022.1.1
  26. Dyachkov, B.A., Amralinova, B.B., Mataybaeva, I.E., Dolgopolova, A.V., Mizerny, A.I., & Miroshnikova, A.P. (2017). Laws of formation and criteria for predicting nickel content in weathering crusts of east Kazakhstan. Journal of the Geological Society of India, 89(5), 605-609. https://doi.org/10.1007/s12594-017-0650-7
  27. Jakopec, I., Marendić, A., & Grgac, I. (2022). A novel approach to landslide monitoring based on unmanned aerial system photogrammetry. Rudarsko-Geolosko-Naftni Zbornik, 37(5), 83-101. https://doi.org/10.17794/rgn.2022.5.8
  28. Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rock mass assessment for man-made disaster risk management. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 403-409. https://doi.org/10.1201/b19901-70
  29. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, 166, 02006. https://doi.org/10.1051/e3sconf/202016602006
  30. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 11-18. https://doi.org/10.29202/nvngu/2019-6/2
  31. Kassymkanova, K.K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17-27. https://doi.org/10.33271/mining17.01.017
  32. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, 280, 08008. https://doi.org/10.1051/e3sconf/202128008008
  33. Naduty, V., Malanchuk, Z., Malanchuk, Y., & Korniyenko, V. (2016). Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 19-24. https://doi.org/10.15587/1729-4061.2016.79524
  34. Malanchuk, Z.R., Khrystyuk, A.O., Stets, S.Ye. Semeniuk, V.V., & Malanchuk, L.O. (2022). Substantiation of research results on energy efficiency of basalt crushing. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 41-46.https://doi.org/10.33271/nvngu/2022-6/041
  35. Stupnik, N.I., Kalinichenko, V.A., Kolosov, V.A., Pismenniy, S.V., & Fedko, M.B. (2014). Testing complex-structural magnetite quartzite deposits chamber system design theme. Metallurgical and Mining Industry, 6(2), 88-93.
  36. Petrov, N.I., Dimitrova, K.Y., & Baskanbayeva, D.D. (2021). On the reliability of technological innovation systems. IOP Conference Series: Materials Science and Engineering, 1031, 012044. https://doi.org/10.1088/1757-899X/1031/1/012044
  37. Nukarbekova, J., Mukhametkhan, B., Mazhit, A., & Shults, R. (2021). Methodology of creating board stability map careers using GIS technologies. Engineering Journal of Satbayev University, 143(1), 24-29. https://doi.org/10.51301/vest.su.2021.v143.i1.04
  38. Mustafin, A., & Kantarbayeva, A. (2021). Resource competition and technological diversity. PLOS ONE, 16(11), e0259875. https://doi.org/10.1371/journal.pone.0259875
  39. Malanchuk, Z.R., Korniyenko, V.Y., Zaiets, V.V., Vasylchuk, O.Y., Kucheruk, M.O., & Semeniuk, V.V. (2023). Study of hydroerosion process parameters of zeolite-smectite tuffs and underlying rock. IOP Conference Series: Earth and Environmental Science, 1254(1), 012051. https://doi.org/10.1088/1755-1315/1254/1/012051
  40. Korniyenko, V., Nadutyi, V., Malanchuk, Y., & Yeluzakh, M. (2020). Substantiating velocity of amber buoying to the surface of sludge-like rock mass. Mining of Mineral Deposits, 14(4), 90-96. https://doi.org/10.33271/mining14.04.090
  41. Korniyenko, V., Malanchuk, Y., Khrystyuk, A., Kostrychenko, V., Shampikova, A., Nogaeva, K., & Kozhonov, A. (2021). Modeling the distribution of rock mass and native copper output by size classes during crushing. E3S Web of Conferences, 280, 01004. https://doi.org/10.1051/e3sconf/202128001004
  42. Nurpeisova, M.B., Sarybaiev, O.A., & Kurmanbaiev, O.S. (2016). Study of regularity of geomechanical processes development while developing deposits by the combined way. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 30-36.
  43. Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 279-292.
  44. Malanchuk, Z., Korniienko, V., Malanchuk, Y., & Moshynskyi, V. (2019). Analyzing vibration effect on amber buoying up velocity. E3S Web of Conferences, 123, 01018. https://doi.org/10.1051/e3sconf/201912301018
  45. Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287-291. https://doi.org/10.1201/b19901-51
  46. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040
  47. Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 441-443. https://doi.org/10.1201/b19901-77
  48. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., & Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, 5, 34-43.
  49. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  50. Malanchuk, Z., Malanchuk, Ye., & Khrystiuk, A. (2016). Mathematical modeling of hydraulic mining from placer deposits of minerals. Mining of Mineral Deposits, 10(2), 18-24. https://doi.org/10.15407/mining10.02.018
  51. Kareeva, A.I., Bolysbek, A.A., Nazarbek, U.B., Abdurazova., P.A., & Raiymbekov, Y.B. (2023). Comprehensive study of physico-chemical properties of low-grade phosphate raw materials. Engineering Journal of Satbayev University, 145(1), 25-31. https://doi.org/10.51301/ejsu.2023.i1.04
  52. Rakishev, B.M. (2022). About the metallogeny of Kazakhstan and its significance for the forecast of mineral deposits. Engineering Journal of Satbayev University, 144(4), 25-33. https://doi.org/10.51301/ejsu.2022.i4.04
  53. Nogaeva, K., Alpiyev, Y., Kozhonov, A., Korniyenko, V., & Malanchuk, Y. (2021). Technological basis of processing of serpentinite copper-gold ores in the Kyrgyz Republic. E3S Web of Conferences, 280, 08005 https://doi.org/10.1051/e3sconf/202128008005
  54. Rezaei, M., & Fallahi, S. (2023). Block model optimization and resource estimation of the Angouran Mine by transferring the exploratory data from the local coordinate system to the UTM. Rudarsko-Geolosko-Naftni Zbornik, 38(3), 1-17. https://doi.org/10.17794/rgn.2023.3.1
  55. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stop systems. E3S Web of Conferences, 123, 01007. https://doi.org/10.1051/e3sconf/201912301007
  56. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 107-114.
  57. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, 201, 01039. https://doi.org/10.1051/e3sconf/202020101039
  58. Utepov, E.B., Omirbai, R.S., Suleev, D.K., Burshukova, G.A., Berkinbaeva, A.S., Nurgaliev, A.K., & Ibraeva, G.M. (2015). Developing metallic damping materials. Metallurgist, 58(11-12), 1025-1031. https://doi.org/10.1007/s11015-015-0035-3
  59. Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the subsoil development. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 161-167. https://doi.org/10.1201/b19901-30
  60. Matheron, G. (1967). Kriging or polynomial interpolation procedures. CIMM Transactions, 70(1), 240-244.
  61. Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, 60, 00005. https://doi.org/10.1051/e3sconf/20186000005
  62. Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Khrystyuk, A.O. (2021). Simulation of amber extraction processes from sandy and clay rocks with stope filling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 35-41. https://doi.org/10.33271/nvngu/2021-6/035
  63. Korniyenko, V.Y., Vasylchuk, O.Y., Zaiets, V.V., Semeniuk, V.V., Khrystyuk, A.O., & Malanchuk, Y.Z. (2022). Research of amber extraction technology by vibroclassifier. IOP Conference Series: Earth and Environmental Science, 1049(1), 012027. https://doi.org/10.1088/1755-1315/1049/1/012027
  64. Dong, H., Wang, P., Song, B., Zhang, Y., & An, X. (2020). Kriging-assisted discrete global optimization (KDGO) for black-box problems with costly objective and constraints. Applied Soft Computing, 94, 106429. https://doi.org/10.1016/j.asoc.2020.106429
  65. Nurpeisova, M., Bekbassarov, Z., Kenesbayeva, A., Kartbayeva, K., & Gabitova, U. (2020). Complex evaluation of geodynamic safety in the development of hydrocarbon reserves deposits. News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences, 1, 90-98. https://doi.org/10.32014/2020.2518-170X.11
  66. Zhang, D., Zhou, P., Jiang, C., Yang, M., Han, X., & Li, Q. (2021). A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis. Computer Methods in Applied Mechanics and Engineering, 384, 113990. https://doi.org/10.1016/j.cma.2021.113990
  67. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., & Khrystyuk, A. (2016). Results of experimental studies of amber extraction by hydromechanical method in Ukraine. Eastern-European Journal of Enterprise Technologies, 3(10(81)), 24-28. https://doi.org/10.15587/1729-4061.2016.72404
  68. Malanchuk, Z., Korniienko, V., & Malanchuk, Ye. (2017). Results of research into amber mining by hydromechanical method. Mining of Mineral Deposits, 11(1), 93-99. https://doi.org/10.15407/mining11.01.093
  69. Mendygaliyev, A., Arshamov, Y., & Yazikov, E. (2022). Orthogonal-contour geometrization of hydrogenetic ore mineralizations. Engineering Journal of Satbayev University, 144(3), 30-33. https://doi.org/10.51301/ejsu.2022.i3.05
  70. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029
  71. Lustyuk, M.G. (2006). Description of the technological scheme of the development of amber deposits. Bulletin of the NUVHP, 2(34), 214-220.
  72. Korniienko, V., Malanchuk, Y., Zaiets, V., Semeniuk, V., & Kucheruk, M. (2023). Research of the dehydration process of amber-containing mining mass. Inzynieria Mineralna, 1(1(51)), 35-43. https://doi.org/10.29227/IM-2023-01-01
  73. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, 166, 02008. https://doi.org/10.1051/e3sconf/202016602008
  74. Лицензия Creative Commons