Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Automatic characterization and quantitative analysis of seismic facies in naturally fractured reservoir: Case study of Amguid Messaoud field, Algeria

Hamlaoui Mahmoud1

1Setif 1 University, Setif, Algeria


Min. miner. depos. 2023, 17(3):42-48


https://doi.org/10.33271/mining17.03.042

Full text (PDF)


      ABSTRACT

      Purpose. Natural fractured reservoirs are a special category of reservoirs due to the effects of porosity and permeability. Optimizing the exploitation of hydrocarbon reserves in this type of reservoir requires a specific study compared to other conventional reservoirs.

      Methods. We have focused on the quantitative analysis of seismic traces for the purpose of an automatic seismic facies recognition strategy. The study area, the Amguid-Messaoud Basin, is formed by a series of horsts and grabens bounded by submeridional “North-East and South-West” faults, as well as perpendicular “North-West and South-East” faults with-out outcrops of fractures, which have a great influence on reservoir fracturing. A set of statistical data analysis methods, such as principal component analysis, discriminant factor analysis, and automatic classification, have been tested on real data from geophysical seismic data interpretation, in particular the stratigraphic interpretation.

      Findings. The results obtained show a better use of data, which, however, are of a different nature, leading to a reliable interpretation of the geological environment.

      Originality. The methodology proved to be useful for constructing a reservoir model and predicting the geological properties of the reservoir along a field.

      Practical implications. The results obtained clearly demonstrate the best use of data, which, however, are of a different nature, which leads to a reliable interpretation of the geological environment. These methods have proved to be very useful for constructing a reservoir model and predicting the geological properties of the latter along a field.

      Keywords: statistical data analysis method, reservoir model, seismic facies, geophysical and stratigraphic interpretation


      REFERENCES

  1. Amini, H., & MacBeth, C. (2018). A Bayesian approach for resolving OWC and GOC from 4-D seismic data. In 80th EAGE Conference and Exhibition (pp. 1-5). Copenhagen, Denmark: European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201801289/a>
  2. Dumay, J.F., & Fournier, J. (1988). Multivariate statictical analysis applied to seismic facies recognition. Geophysics, 53(59), 1263-1275. https://doi.org/10.1190/1.1442554
  3. Grana, D., & Mukerji, T. (2015). Bayesian inversion of time-lapse seismic data for the estimation of static reservoir properties and dynamic property changes. Geophysical Prospecting, 63(3), 637-655. https://doi.org/10.1111/1365-2478.12203
  4. Park, H.M. (2015). Univariate analysis and normality test using SAS, Stata, and SPSS. PhD Thesis. Bloomington, United States: Indiana University.
  5. Remy, N., Boucher, A., &Wu, J. (2009). Applied geostatistics with SGeMS: A user’s guide. Cambridge, United Kingdom: Cambridge University Press, 264 p. https://doi.org/10.1017/CBO9781139150019
  6. Zhong, Z., & Carr, T.R. (2019). Geostatistical 3-D geological model construction to estimate the capacity of commercial scale injection and storage of CO2 in Jacksonburg-Stringtown oil field, West Virginia, USA. International Journal of Greenhouse Gas Control, (80), 61-75. https://doi.org/10.1016/j.ijggc.2018.10.011
  7. Fournier, F., & Derain, J.F (1995). A statistical methodology for deriving reservoir proprieties from seismic data. Geophysics, 60(5), 1437-1450. https://doi.org/10.1190/1.1443878
  8. Johansen, T.A., Jensen, E.H., Mavko, G., & Dvorkin, J. (2013). Inverse rock physics modeling for reservoir quality prediction. Geophysics, 5(1), 54-66. https://doi.org/10.1190/geo2012-0215.1
  9. Pang, B., Dong, Y.X., Chen, D., & Pang, X.Q. (2019). Main controlling factors and basic model for hydrocarbon enrichment in the sandstone target layer of petroliferous basin: a case study of Neogene sandstone reservoirs in Nanpu sag, Bohai Bay Basin. Acta Petrolei Sinica, 49(5), 519-531.
  10. Hampson, D.P., Schuelke, J.S., & Quirein, J.A. (2001). Use of multiattribute transforms to predict log properties from seismic data. Geophysics, 66(1), 220-236.
  11. Hou, J., Takahashi, T., Katoh, A., Jaroonsitha, S., Chumsena, K.P., & Nakayama, K. (2008). Application of seismic attributes and neural network for sand probability prediction – A case study in the North Malay Basin. Bulletin of the Geological Society of Malaysia, (54), 115-121.
  12. Assunção, G.S., Davolio, A., & Schiozer, D.J. (2016). A methodology to integrate multiple simulation models and 4-D seismic data considering their uncertainties. In SPE Annual Technical Conference and Exhibition. Dubai, United Arab Emirates: Society of Petroleum Engineers. https://doi.org/10.2118/181608-MS
  13. Johansen, T.A., Spikes, K., & Dvorkin, J. (2004). Strategy for estimation of lithology and reservoir properties from seismic velocities and density. SEG Technical Program Expanded Abstracts 2004, 1726-1729. https://doi.org/10.1190/1.1845162
  14. Laloy, E., Hérault, R., Jacques, D., & Linde, N. (2018). Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resources Research, (54), 381-406. https://doi.org/10.1002/2017WR022148
  15. Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge, United Kingdom: Cambridge University Press, 511 p. https://doi.org/10.1017/CBO9780511626753
  16. Dahraj, N.U., & Bhutto, A.A. (2014). Linear mathematical model developed using statistical methods to predict permeability from porosity. In PAPG/SPE Pakistan Section Annual Technical Conference (#174716). Islamabad, Pakistan: Society of Petroleum Engineers. https://doi.org/10.2118/174716-MS
  17. Ali Ahmadi, M., Zendehboudi, S., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophysical Prospecting, 61(3), 582-598. https://doi.org/10.1111/j.1365-2478.2012.01080.x
  18. Baziar, S., Tadayoni, M., Nabi-Bidhendi, M., & Khalili, M. (2014). Prediction of permeability in a tight gas reservoir by using three soft computing approaches: A comparative study. Journal of Natural Gas Science and Engineering, (21), 718-724. https://doi.org/10.1016/j.jngse.2014.09.037
  19. Lyu, W.Y., Zeng, L.B., Lyu, P., Yi, T., Dong, S.Q., Wang, S.J., Xu, X., & Chen, H. (2022). Insights into the mechanical stratigraphy and vertical fracture patterns in tight oil sandstones: The Upper Triassic Yanchang Formation in the eastern Ordos Basin, China. Journal of Petroleum Science and Engineering, (212), 110247. https://doi.org/10.1016/j.petrol.2022.110247
  20. Bhatt, A., & Helle, H.B. (2002). Determination of facies from well logs using modular neural networks. Petroleum Geoscience, 8(3), 217-228. https://doi.org/10.1144/petgeo.8.3.217
  21. Bosch, M., Mukerji, T., & Gonzalez, E.F. (2010). Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics, 75(5), 75A165-75A176. https://doi.org/10.1190/1.3478209
  22. Cao, J., & Roy, B. (2017). Time-lapse reservoir property change estimation from seismic using machine learning. The Leading Edge, 36(3), 234-238. https://doi.org/10.1190/tle36030234.1
  23. Chaki, S., Verma, A.K., Routray, A., Jenamani, M., Mohanty, W.K., Chaudhuri, P.K., & Das, S.K. (2013). Prediction of porosity and sand fraction from well log data using ANN and ANFIS: A comparative study. Materials of the 10th Biennial International Conference & Exposition of SPG, 1-5.
  24. Chaki, S., Verma, A.K., Routray, A., Mohanty, W.K., & Jenamani, M. (2014). Well tops guided prediction of reservoir properties using modular neural network concept: A case study from western onshore, India. Journal of Petroleum Science and Engineering, (123), 155-163. https://doi.org/10.1016/j.petrol.2014.06.019
  25. Balasis, G., Donner, R., Potirakis, S., Runge, J., Papadimitriou, C., Daglis, I., Eftaxias, K., & Kurths, J. (2013). Statistical mechanics and information-theoretic perspectives on complexity in the earth system. Entropy, 15(11), 4844-4888. https://doi.org/10.3390/e15114844
  26. Lopes, R.H.C. (2011). Kolmogorov-Smirnov test. International Encyclopedia of Statistical Science, 718-720. https://doi.org/10.1007/978-3-642-04898-2_326
  27. Beicip, F. (1995). Revision of the geological model of the Hassi Messaoud Field. Rapport Interne Crd Sonatrach, 1-26.
  28. Belahmeur, S., & Retmi, L. (2002). Analysis of the trends of porosity and permeability in the Hassi Messaoud Field. Sonatrach Activité Amont Division Production Région Hassi Messaoud.
  29. Boudjema, A. (1987). Structural evolution of the “Triassic” oil basin of the Western North Sahara (Algeria). Ms. Thesis. Paris, France: Pierre and Marie Curie University.
  30. Djarnia, M.R., & Fekirine, B. (1998). Sedimentological and diagenetic controls on Cambro-Ordovician reservoir quality in the southern Hassi Messaoud area (Saharan Platform, Algeria). Petroleum Geology of North Africa: Geological Society, London, Special Publication, (132), 167-175. https://doi.org/10.1144/GSL.SP.1998.132.01.09
  31. Sonatrach. (2005). La stratigraphie du champ Hassi Messaoud. Rapport Interne, Division Exploration, 1-35.
  32. Benayad, S., Park, Y.S., Chaouchi, R., & Kherfi, N. (2013). Parameters controlling the quality of the Hamra Quartzite reservoir, southern Hassi Messaoud, Algeria: insights from a petrographic, geochemical and provenance study. Arabian Journal of Geosciences, (7), 1541-1557. https://doi.org/10.1007/s12517-013-0905-6
  33. Cherana, A., Aliouane, L., Doghmane, M.Z., Ouadfeul, S.-A., & Nabawy, B.S. (2022). Lithofacies discrimination of the Ordovician unconventional gas-bearing tight sandstone reservoirs using a subtractive fuzzy clustering algorithm applied on the well log data: Illizi Basin, the Algerian Sahara. Journal of African Earth Sciences, (196), 104732.https://doi.org/10.1016/j.jafrearsci.2022.104732
  34. Dadashpour, M., Landrø, M., & Kleppe, J. (2007). Nonlinear inversion for estimating reservoir parameters from time-lapse seismic data. Journal of Geophysics and Engineering, 5(1), 54-66. https://doi.org/10.1088/1742-2132/5/1/006
  35. Li, Z., Du, C., Tang, Y., & Li, X. (2020). Experimental and statistical investigation of reservoir properties with the effect of waterflooding treatment. ACS Omega, 5(33), 20922-20931. https://doi.org/10.1021/acsomega.0c02374
  36. Лицензия Creative Commons