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Abstract 

Purpose. Natural fractured reservoirs are a special category of reservoirs due to the effects of porosity and permeability. 

Optimizing the exploitation of hydrocarbon reserves in this type of reservoir requires a specific study compared to other con-

ventional reservoirs. 

Methods. We have focused on the quantitative analysis of seismic traces for the purpose of an automatic seismic facies 

recognition strategy. The study area, the Amguid-Messaoud Basin, is formed by a series of horsts and grabens bounded by 

submeridional “North-East and South-West” faults, as well as perpendicular “North-West and South-East” faults with-out 

outcrops of fractures, which have a great influence on reservoir fracturing. A set of statistical data analysis methods, such as 

principal component analysis, discriminant factor analysis, and automatic classification, have been tested on real data from 

geophysical seismic data interpretation, in particular the stratigraphic interpretation. 

Findings. The results obtained show a better use of data, which, however, are of a different nature, leading to a reliable in-

terpretation of the geological environment. 

Originality. The methodology proved to be useful for constructing a reservoir model and predicting the geological proper-

ties of the reservoir along a field. 

Practical implications. The results obtained clearly demonstrate the best use of data, which, however, are of a different na-

ture, which leads to a reliable interpretation of the geological environment. These methods have proved to be very useful for 

constructing a reservoir model and predicting the geological properties of the latter along a field. 
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1. Introduction 

Statistical data analysis methods are increasingly being 

used to complement deterministic approaches to highlight data 

interdependencies. They are all the more effective because the 

observed measurements are multiple and varied [1]-[5] and 

have the advantage of integrating a multidimensional data 

representation, including factor analysis, classification method 

and discriminant analysis [6]. They have discovered very 

interesting field of application, especially in the domain of 

seismic technology, since seismic data, due to their good spa-

tial coverage, is an important source of information for geolog-

ical, structural and stratigraphic interpretation. They are com-

pleted by a finer lithological interpretation, which is of interest 

at the reservoir-level of trace portions, where the morphology 

of seismic traces is quantitatively analyzed [2], [7]. 

Lithological interpretation of seismic data seeks to estab-

lish links between reservoir geological properties and seismic 

response [8], [9]. This interpretation is based on the concept 

of seismic facies, which is defined as a set of identical traces 

of viewpoint characteristics (attributes) derived from various 

calculations of seismic traces [10], [11]. Pattern recognition 

methods are then applied to traces characterized by seismic 

attributes to obtain a better description of the reservoir. 

The work presented in this study is part of a stratigraphic 

interpretation of seismic data. More specifically, we intend to 

test the methodology for automatic recognition of seismic 

facies in the time window of analysis based on statistical data 

analysis methods. The data preparation for this analysis was 

discussed, such as seismic sequence determination, pointing 

and interpretations of geological horizons. Based on a manual 

analysis of seismic facies and stating that their analysis was a 

fundamental multivariate approach [12]-[15], several seismic 

parameters (apparent frequencies and reflection energy) are 

taken into account simultaneously when determining homo-

geneous zones of seismic facies. In addition, the characteris-

tics of seismic traces in the vicinity of wells with available 

geological information were used in order to find similar ones 

in terms of lithological and petrophysical characteristics. 

1.1. Theoretical background 

The statistical analysis of the seismic facies approach is 

based on numerical data coding, which is considered as the 
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starting point for the whole multidimensional analysis, and 

the results obtained will be interpreted according to this co-

ding. The flowchart considered in our methodology for au-

tomatic classification and seismic facies maps is illustrated in 

Figure 1. The seismic traces are considered as individuals 

and will be represented by points in multidimensional space 

generated by the seismic attributes [10]. The statistical methods 

used are to organize individuals into well-separated homoge-

neous groups by highlighting the indirect links between the 

seismic data and the geological structure that represents the 

seismic response [14]. Statistical analysis can be controlled 

by incorporating geological knowledge into the analysis, 

while unsupervised analysis uses only seismic information. 

Attribute methods will be applied at the preliminary stage of 

data preparation, i.e. Principal Component Analysis (PCA) 

and Discriminant Analysis, which are applied to filter and 

remove redundancies, as well as to provide new usable at-

tributes instead of the original ones [6], [9], [15]. 

 

 

Figure 1. Methodology flowchart 

The seismic traces can be analyzed in a time window at 

the reservoir (target) level, defined by the top and bottom 

peaks of the target interval. The calculation of the methodo-

logy parameters is to take into account all the information 

contained in the extracted part of the trace, and then to retain 

the most important elements of this information (Fig. 1). The 

following sections provide the detailed multidimensional 

theoretical analysis required for application in this study. 

2.1. Seismic data coding 

Let n be the number of traces located on the abscissas x1, 

x2, x3, ... xn on the data position plane. These traces constitute 

a 2D seismic section in the time window around the reser-

voir. Amplitudes corresponding to J time horizons t1, t2, t3, tj, 

which are denoted by the values Z (xi, tj). For statistical pur-

poses, the sample tj will be considered as a variable, and 

Zij = Z (xi, tj) will denote the measurement (seismic attri-

butes) of this variable on individual i (seismic trace xi). The Z 

array corresponding to this data has the formed nJ dimension 

(geological horizon) [16]. 

2.2. Seismic attributes of traces and time 

windows for analysis 

After selecting a time window, seismic attributes are ex-

tracted from each trace, calculated from the temporal or 

spectral domain. All seismic survey’s traces can be repre-

sented using their definition as points in the multivariate 

space created by these attributes (feature space). From the 

perspective of the considered seismic properties, adjacent 

traces in this space appear to be comparable [17]-[19]. 

2.2.1. Calculated geophysical functions and attributes 

Taking as a basis the main families of variables charac-

terizing the geological environment, an attempt can be made 

to characterize the collected seismic traces by a number of 

seismic attributes, the discriminating ability of which in 

relation to a priori geological information [20], [21]. The 

considered geophysical parameters and functions are quanti-

fication of trace morphology to measure their similarity  

(or dissimilarity). 

For this purpose, seismic attributes must be calculated 

from the temporal and frequency representations of the trac-

es. All seismic traces can be considered either in the time 

domain or in the frequency domain: 

– in the time domain, one can consider the trace y(t) and 

its autocorrelation: 

( ) ( )E y t y t  =  +  ;             (1) 

– in the frequency domain, the phase and amplitude spec-

tra are calculated from the FFT of the trace: 

( ) ( ) ( )siny t A t t   = +  ,            (2) 

as well as the analytical signal: 

( ) ( ) ( )S t y t iz t= + .             (3) 

Table 1 summarizes all geophysical parameters (statisti-

cal population variables) calculated on the seismic traces 

used for the statistical analysis (quantitative characterization 

and automatic analysis of seismic facies) [21]-[24]. 

Table 1. Summarized geophysical parameters 

Family Description Symbol 

Auto-

correlation 

Main rebounds of auto-

correlation, ranked by  

decreasing amplitude 

Ami · i = 1, ..., n 

Time corresponds 

to the main rebounds 
TAMi · i = 1, ..., n 

Time of the first crossings 

to zero 
TPZi · i = 1, ..., n + 1 

Spectrum 

Frequency corresponding 

to the amplitude peak of the 

amplitude spectrum 

FM 

Frequency corresponding to 

deciles of amplitude distribution 
Qi · i = 1, ..., m 

Frequency corresponding 

to deciles of distribution of 

frequency-weighted amplitudes 

QWi · i = 1, ..., m 

Analytical 

signal 

module or 

real trace 

Area under the module curve ETNT 

Time corresponding to deciles  

of distribution of the standar-

dized module amplitudes 

Ei · i = 1, ..., m 

Time corresponding to deciles  

of distribution of absolute 

values of trace amplitudes 

Ti · i = 1, ..., m 
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The autocorrelation of the trace is related to the cyclicity 

of sedimentation, the amplitude spectrum is related to the 

average thickness of the banks. The frequency spectrum is 

related to the distribution of sedimentation in a given inter-

val. The third family of variables is related to the energy 

distribution of the trace, which can be quantified either  

directly on the trace or using an analytical signal module. 

3. Statistical methods used and data coding 

In this section, we drew inspiration from the basic source 

data of statistical methods, depending on their distance [2], 

[3], [7]. They organize points into an n-dimensional vector 

space where they define various trace classes or groups. By 

creating a new vector p-dimensional space with a lower di-

mension than the original n-dimensional space (p < n) by 

linearly combining the initial variables, factor analysis at-

tempts to efficiently summarize the basic data. Then, the 

points are transferred from the original n-dimensional space 

(variables) to the new p-dimensional space (factors). The 

goal of Principle Component Analysis is to determine the 

number of p or orthogonal axes needed to project xi points 

onto the new space in a manner comparable to their initial 

placement. When discriminant factor analysis is performed, it 

is necessary to arrange the points into classes to minimize the 

distortion inevitably created by the projection [25]. The feature 

used to choose new axes is that group projections should be as 

far apart as possible, and projected points within the same 

group should be as close to each other as possible. The proper-

ty used to set the new axes is that projected points from the 

same group should be as close together as possible, and the 

group projections should be as far apart as possible. The fun-

damental distinction between the two procedures is that in 

discriminant factor analysis, the spatial distortion of the data 

can be enhanced to reveal a priori differences between groups.  

3.1. Methodological steps 

Discriminant factor analysis and clustering techniques are 

used to characterize and distinguish traces related to particu-

lar geological environments [2], [7]. 

The used methodology has two distinct stages, one train-

ing stage and then a prediction stage. 

At the training stage, it is possible to determine the dis-

crimination between traces and calibrate the studied seismic 

data with data from nearby wells. Due to the high seismic 

data heterogeneity, caused by geographic seismic data varia-

bility and processing, this step becomes necessary. When 

using data from nearby wells with available geological in-

formation, or, compared with stratigraphic survey, training or 

reference seismic traces are determined for each seismic 

facies representing a specific seismic facies. 

The second step is to apply discriminant factor analysis to 

the training traces. In this study, the technique used is based 

on stepwise discriminant analysis by stepwise selection of 

variables useful for determining among a priori classes, as-

sumed to be multivariate normal, with a common covariance 

matrix. Variables are chosen to enter or exit the model ac-

cording to the F-test significance level from an analysis of 

covariance, where already chosen variables act as cova-

riances and the variable considered is a dependent varia-

ble [26]. A modelling stage to check whether the chosen 

discrimination parameters are linked with the characteristic 

geological variations is included in the prediction stage [14]. 

At this stage, the classification of unknown seismic traces, 

where we calculate the traces whose facies we want to de-

termine, the discrimination parameters previously chosen, 

and classify the traces with respect to the training traces. 

4. Study area presentation 

The study area, the Amguid-Messaoud mole, is located in 

the central part of the Algerian Sahara (Fig. 2) and is known 

for its oil producing wells, mainly in Cambrian reservoirs 

and Ordovician sandstone units (Hamra Quartzite) [27]-[31]. 

 

 

Figure 2. Location map of the study area, Amguid-Messaoud 

Field (Algeria) in right red rectangle 

The reservoirs occur at an average depth of 3200-3400 m 

and are characterized by a very high variability in the physi-

cal petroleum properties. Its up-dip location in relation to the 

Hassi Messaoud Basin and the Silurian bedrock, as well as 

the diversity of Cambrian petroleum objects (R1 + R2) and 

Ordovician sandstone units (Hamra Quartzite) makes it a 

subject of great interest in Algiers hydrocarbon field [27]-

[31]. Oil results recorded in wells of this region confirm not 

only the existence of an Ordovician wedge around the Hassi 

Messaoud [29], [31]. 

4.1. Structural aspect and stratigraphy 

The sedimentary cover has a total thickness of about 

4200 m and is represented by two transgressive and discor-

dant sets, Meso-Cenozoic at the top and Paleozoic at the 

base, overlying the Precambrian basement. Under the clay-salt 

formations of the Tiras, the Paleozoic series (Ordovician-

Cambrian) was folded during the Caledonian and Hercynian 

eras, transgressive and discordant on the Precambrian basement, 

which is represented by a thick series of detrital rocks [31], [32]. 

The Ordovician is marked by micro-conglomerate clays, 

Oued Saret sandstones, Azzel clays, Ouargla sandstones, El 

Hamra quartzites, El Atchan sandstones, and El Gassi clays, 

defined by an alternation zone between Cambrian Ri (isomet-

ric) and Cambrian Ra (anisometric) (Fig. 3). 

The Silurian, the main potential source rock of the Trias-

sic province, is totally absent in the wells of the study area, 

which is associated with Hercynian erosion, but it is present in 

the adjacent wells. In the Meso-Cenozoic series, the average 

thickness of the deposits is about 3500 m. In general, they are 

transgressive and discordant with the Paleozoic series, repre-

sented primarily by continental and lagoon deposits. They 

are composed of the Triassic sediment resting on the Hercyn-

ian unconformity, constituted in its basal part by clayey-

sandstone deposits of continental fluvial origin and by vol-

canic flows. They are surmounted by a clayey-saliferous 

series of regional strike, constituting a good reservoir cover.  
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Figure 3. Isobath map of the Hercynian discordance 

The detrital Triassic sedimentation is subdivided into 

three sandstone levels (SI, T1 and T2), which constitute the 

main petroleum object in the regions bordering the study 

area. Post-Triassic sedimentation (Lias L1 and L2) is charac-

terized by a clay-evaporitic layer with an average thickness 

of 900 m [27]-[33]. From a structural point of view, the study 

area is considered as an anticline controlled by two faults 

extending North-East-South-West with the top located to-

wards the South-West. The GR///-1 well to the north of 

HM//-1 is structurally 82 m lower in the Cambrian than the 

latter, while seismic interpretation predicted a structural gain 

of 61 m [29]-[33] in the Hercynian unconformity and 90 m in 

the Cambrian compared to the HM//1 well (Fig. 4). 

 

 

Figure 4. Geological section between the GR, HM, and SG 

4.2. Principal oil reservoirs 

4.2.1. Cambrian reservoirs 

The Cambrian age reservoir is considered the main oil 

producing reservoir in the Hassi Messaoud field [33] and 

around is subdivided into two main reservoirs, Ri and Ra. 

Most of the Ra + Ri units are mainly composed of quartzite 

sandstone with upward bioturbation. This unit is considered 

to be transitional facies between continental and shallow 

marine environments, which has a poorly known and hetero-

geneous variation of facies compared to other reservoirs. 

Poor petrophysical characteristics are related to the reservoir 

facies itself and its very low structural position near the water 

body. The Hercynian tectonics affects this area, but it has not 

reached the Ra reservoir [6]. 

4.2.2. Ordovician reservoirs 

From a lithological point of view, the Ordovician for-

mation is considered to be a compact massive, made up of 

white to grey-white, fine to medium, locally coarse, silico-

quartzite to quartzite and dense, hard sandstone with black, 

silty, and flaky clayey passages. The Hamra Quartzite for-

mation is considered the most important Ordovician for-

mation (Fig. 4). Several wells drilled in the vicinity of the 

Hassi Messaoud field are producing oil with average petro-

physical parameters (porosity ranging from 2 to 10% and 

permeability ranging from 0.1 to 100 mD), which are con-

trolled by diagenetic effects [27]-[33]. 

5. Analysis and computation 

We have adopted a methodology using both clustering 

techniques and factor analysis (discriminant factor analy-

sis). We carried out a modelling stage to check whether the 

selected discrimination parameters are related to the geo-

logical variations in order to characterize the predictive 

stage [8], [13], [34], which provides classification of the 

unknown seismic traces. 

At this stage, we calculated for unknown seismic traces, 

i.e. traces whose facies we want to determine, the previous-

ly selected discrimination parameters. The traces are classi-

fied with respect to the training traces. Then, we developed 

our methodology. 

5.1. Statistical characterization of real seismic traces 

The statistical method is to analyze small seismic win-

dows within the reservoir [2], [10], [11], [14], [34], [35]. The 

studied seismic sections (Fig. 5) intersected the paleo-

environment mentioned above and were calibrated and inter-

preted in terms of the geological formation with data from 

adjacent wells. The intervals taken from the sections corre-

spond to three distinctly different reservoir facies with the 

following dual time windows. 

The analysis windows of the test samples correspond to 

the Lias S1-S2 (group 1 G1), Ordovician (group 2 G2), and 

Cambrian Ri + Ra (group 3 G3). The analysis windows of 

the reconnaissance samples correspond to the Ordovician 

and Cambrian Ri + Ra roofs. The main objective is to  

derive a geological model to determine the special distribu-

tion of the target facies (Ordovician: Hamra Quartzite), in 

the study area and to create a reservoir facies map covering 

the entire region. 

 

 

Figure 5. 2D section corresponds to a seismic profile calibrated 

and stratigraphically interpreted with data from neigh-

boring wells 
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5.2. Tests for the separating power of variables 

The separating power of variables was tested mainly by 

performing discriminant factor analysis between groups of 

traces of various geological environments (analysis win-

dows). It was found very quickly that the variables calculated 

on the “rectified” trace (Ti parameter, in Table 1, quantifying 

the same information) gave the same result as the variables 

of the analytical signal module (Ei parameter in Table 1). 

Taking absolute trace values is also a way of estimating the 

“trace envelope”, but the envelope given by the analytical 

signal is less sensitive to noise. For this raison, we retained 

the Ei parameter for quantifying the trace energy and its 

distribution due to the Ti variables (Table 1). 

5.2.1. Discriminant analysis of seismic traces 

of different seismic groups 

First, we tested the discriminatory power of the variables 

by using only one family at a time [7], [8], [34], [35]. The 

19 variables calculated from the autocorrelation amplitude 

spectrum allow some grouping of individuals according to 

their facies, but the barycenter of the classes is less close. 

Therefore, the projected cloud is very compact within the 

same group. The 10 variables calculated from trace autocor-

relation allow for only opposition due to axis 1, whose dis-

criminatory power is very strong between individuals of 

group 1 facies. Other groups (G2, G3) are also well separa-

ted, while axis 2 also provides good discrimination. The 

10 variables quantifying energy, total module emergence and 

deciles of the distribution of module amplitudes, allow prac-

tically a weak separation between G2 and G3, but the G1 

group is isolated. Classical discriminant factor analysis with 

variables of three families allows an excellent separation 

between the three groups of traces G1, G2 and G3. 

5.2.2. Search for the most discriminant variables 

The reliability of discrimination will be better if we con-

sider a small number of variables compared to the number of 

individuals. For example, in the case of two groups of indi-

viduals, it is easier to identify a separating hyperplane in low-

dimensional space. However, for a given number of variables 

and a given number of groups, there are few studies that de-

fine the number of individuals from which the discrimination 

will be significant (for a given number of variables, the higher 

the number of groups, the more individuals will be needed to 

obtain a statistically meaningful discrimination). 

5.2.3. Discriminant factor analysis by principal 

component analysis factors 

The population of traces was studied and 39 variables be-

longing to various families were included. We performed a 

Varimax Principal Component Analysis and retain the 

09 components that account for about 97% of the cloud’s 

total inertia [7], [8]. Discriminant factor analysis, carried out 

without reduction of new variables with these 09 principal 

components, gave a fairly satisfactory distribution of indi-

viduals on the factorial plane. Axis 1 has a greater discrimi-

natory power (55.42%) than axis 2 (19.86%) and allows for 

the opposition of all the studied types of facies. Classical 

principal component analysis with 39 variables allowed the 

extraction of 10 principal components that account for 98% 

of the cloud’s total inertia. Discriminant factor analysis was 

then performed on 10 components, with the population di-

vided into three groups. The results obtained are not very 

satisfactory, because only axis 1 has a significant discrimina-

tory power and allows the separation between the groups of 

individuals from three groups. We continued these tests on a 

population of 93 traces, conducting family-by-family princi-

pal component analysis of the variables. We have retained 02 

components to summarize all the variables calculated on the 

amplitude spectrum, 04 principal components to summarize 

that of the autocorrelation, and 02 components to summarize 

the parameters calculated for the analytical signal. Discrimi-

nant factor analysis performed with these 08 principal com-

ponents allowed for a good separation along two axes. 

5.2.4. Step by step discriminant factor analysis 

From the population of 93 real traces, a base sample of 

63 individuals and a test sample of 30 individuals were 

formed. Individuals were divided into three groups and 

39 variables representing three families of parameters were 

used. We obtained 98.60% of wells classified according to 

the base sample and 62.4% of wells classified according to 

the test sample. The introduced variables are arranged in 

order of their discriminatory power in step # 6. The percen-

tage of well-ranked individuals in the test sample may seem 

low. However, random distribution of individuals into three 

groups should give only 50.5% of well-ranked individuals. 

This is quite satisfactory and we believe they are reliable. 

6. Results and discussion 

Discriminant factor analysis performed using only varia-

bles belonging to the same family show that discrimination 

between groups is possible. Using a set of variables, we 

obtained a regionalization of the factorial plans into three 

zones corresponding to the three studied facies groups. This 

was done with a number of variables less than 10. These tests 

made it possible not only to confirm that the facies groups 

are individualized by the parameters calculated from the 

traces, but also that the partitioning carried out during the 

analysis had a satisfactory predictive power. Thus, it is pos-

sible to predict with good chances of success the facies to 

which an anonymous individual belongs. The most discrimi-

nating variables with respect to the three groups were found 

to be (E9, QW5, QW8, and E7) and these variables were intro-

duced first in the various analyses. However, among the 

variables we always find one or more that describe a trace 

(ETNT or Ei), sometimes (TPZi, TAM, AMi) or a spectrum 

(Qi, QWi, FM) (Table 1). The fact that no general rule 

emerges from this study could be a limitation to the imple-

mentation of this facies characterization method. 

After determining the most discriminating parameters, we 

calculated for unknown seismic traces and collected seismic 

profiles passing through the study area, i.e. the traces whose 

facies we want to determine and classify in relation to al-

ready studied traces. At this stage, we decided on the as-

signment of each section portion and classified these traces 

in relation to the reference traces studied using AFD and 

automatic classification. 

The assignment analysis results are plotted on isopach 

map showing the thickness variations of the Hamra quartzite 

facies reservoirs (Fig. 6). A geometric synthesis can be given 

to the evolution of reservoir thicknesses (Cambrian Ri + Ra), 

where Hercynian movements play a major role in structuring 

the different Saharan platform basins and in the distribution 

of reservoir rocks, namely the Hassi Messaoud mole. 
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Figure 6. Isopach map from Hamra Quartzite 

Analysis of isopach maps below the Hercynian uncon-

formity shows a clear variation in the thickness of the Ordo-

vician reservoirs (Hamra Quartzite). A variation in thickness 

can be seen between 30 and 70 m, with a distribution of 

thicknesses from lower in the northern part (10 m) and gra-

dually increasing towards the southern part, reaching about 

70 m. This can be explained by the influence of Hercynian 

erosion. While for the Ra + Ri reservoir, the thickness varia-

tion varies from 8 to 30 m, forming a tabular structure that 

results in a homogeneous reservoir. The most important part 

of the thicknesses is in the center and in the extreme N-W of 

the reservoir. The best thickness in this part reaches 13-17 m, 

while the extreme north and south-eastern part has the smal-

lest thickness of 10 m. 

7. Conclusions 

The methodology we followed is based on a step for cal-

culating seismic parameters for seismic traces in the vicinity 

of wells interpreted in terms of seismic facies, followed by a 

multidimensional analysis step and a step of automatic 

recognition of seismic facies by assignment. The obtained 

facies map shows a special distribution of the target facies 

(Ordovician Hamra Quartzite), and the link between the 

characterized seismic facies and the geological facies has 

been established with great success. 

The results already found are encouraging, as they con-

firm in the real case the possibility of discrimination be-

tween seismic facies by studying the geophysical characte-

ristics of a portion of a seismic trace crossing a given geo-

logical environment. This study led us to the calculation of 

seismic parameters from temporal and frequency represen-

tations of the traces. These variables not only characterize 

the morphology of the analyzed traces but also allow the 

discrimination between groups of traces representing  

various paleo-environments. 
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Автоматичне визначення характеристик та кількісний аналіз сейсмофацій 

у природно-тріщинуватому пласті: практичне дослідження родовища Амгуід-Мессауд, Алжир 

Х. Махмуд 

Мета. Визначення характеристик та кількісний аналіз сейсмофацій у природно тріщинуватому пласті з урахуванням впливу по-

ристості та проникності для оптимізації використання запасів вуглеводнів. 

Методика. Дослідження зосереджено на кількісному аналізі сейсмічних трас з метою стратегії автоматичного розпізнавання 

сейсмофацій. Досліджуваний район, басейн Амгуід-Мессауд, утворений серією горстів і грабенів, обмежених субмеридіональними 

Північно-Східним і Південно-Західним розломами, а також перпендикулярними Північно-Західним і Південно-Східним розломами 

без відслонень тріщинуватості, які мають великий вплив на тріщинуватість пласта. Ряд методів статистичного аналізу даних, таких 

як аналіз головних компонентів, аналіз дискримінантних факторів і автоматична класифікація, були випробувані на реальних даних 

геофізичної сейсмічної інтерпретації даних, зокрема стратиграфічної інтерпретації. 

Результати. Отримано карту фацій, що показує особливий розподіл цільової фації (ордовикський кварцит Хамра); зв’язок між 

охарактеризованою сейсмічної фацією та геологічною фацією був встановлений з великим успіхом. Розраховано сейсмічні параме-

три за часовими та частотними представленнями трас, що характеризують не лише морфологію аналізованих слідів, але також 

дозволяють розрізняти групи слідів, що представляють різні палеосередовища. Отримані результати свідчать про найкраще вико-

ристання даних, які, однак, мають інший характер, що призводить до достовірної інтерпретації геологічного середовища. 

Наукова новизна. Розроблено нову методологію для побудови моделі пласта та прогнозування геологічних властивостей плас-

та вздовж родовища. 

Практична значимість. Отримані результати чітко демонструють найкраще використання даних, які, однак, мають інший ха-

рактер, що призводить до надійної інтерпретації геологічного середовища. Ці методи виявилися дуже корисними для побудови 

моделі пласта та прогнозування його геологічних властивостей вздовж родовища. 

Ключові слова: метод аналізу статистичних даних, модель пласта, сейсмофації, геофізична інтерпретація, стратиграфічна 

інтерпретація 
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