Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Predictive geometrization of grade indices of an iron-ore deposit

Andrii Peremetchyk1, Olga Kulikovska1, Nataliia Shvaher1, Serhii Chukharev2, Serhii Fedorenko1, Roland Moraru3, Vladko Panayotov4

1Kryvyi Rih National University, Kryvyi Rih, Ukraine

2National University of Water and Environmental Engineering, Rivne, Ukraine

3University of Petroșani, Petroșani, Romania

4Bulgarian Academy of Sciences, Sofia, Bulgaria


Min. miner. depos. 2022, 16(3):67-77


https://doi.org/10.33271/mining16.03.067

Full text (PDF)


      ABSTRACT

      Purposeis development of the methods to predict indices of iron-ore deposits relying upon the improvement of available techniques as well as formulation of new geometrization procedures and identification of the most adequate decision-making way to assess geological data as the basis for geometrization and prediction.

      Methods are to develop a self-organizing prediction algorithm based upon combination of the available techniques and formulation of new mathematical methods; consider various means to assess them in the context of iron-ore deposit; and select the most efficient one. Use of geostatistical methods makes it possible to evaluate and process output geological information. The methods help assess mineral reserves of a mining enterprise.

      Findings. Dependencies of magnetite ore content upon geological factors have been derived in the context of an open pit of PIVDGZK JSC. The deposit has been geometrized; predictive mining and geometric model of the deposit site has been deve-loped. Factors have been determined influencing the distribution nature of the indices. Graphs to arrange grade indices of the deposit have been constructed. The graphs have helped predict their placement within the deposit.

      Originality. A method to predict mining and geological indices of iron-ore deposit has been developed relaying upon a self-organizing algorithm. Correlation between grade indices of minerals and different geological factors has been determined making it possible to describe spatial distribution of grade indices of the deposit.

      Practical implications. Geometrization methods for iron-ore deposits have been formulated. The methods help schedule mining operations accurately while improving their efficiency. The developed predictive self-organizing algorithm is the flexible tool used for various mining and geological conditions to provide scheduling and assessing of different mining methods. The self-organizing as well as geostatic evaluation techniques is quite a promising research tendency.

      Keywords: self-organizing algorithm, geostatic methods, reserves, geometrization, grade indices, prediction


      REFERENCES

  1. Stupnik, N.I., Kalinichenko, V.A., Kolosov, V.A., Pismenniy, S.V., & Fedko, M.B. (2014). Testing complex-structural magnetite quartzite deposits chamber system design theme. Metallurgical and Mining Industry, (2), 89-93
  2. Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyy, S., & Shepel, A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and Mining Industry, (3), 32-37.
  3. Stupnik, N., Kalinichenko, V., Pismennij, S., & Kalinichenko, Е. (2015). Features of underlying levels opening at “ArsellorMittal Kry-vyy Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39-44. https://doi.org/10.1201/b19901-8
  4. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450
  5. Fedorenko, P.Y., Peremetchyk, A.V., Podoynitsina, T.O., & Nastin, P.V. (2021). Hirnycho-heometrychnyy monitorynh ta modelyuvannya nadr. Girnychyi Visnik, (109), 7-14. https://doi.org/10.31721/2306-5435-2021-1-109-7-14
  6. Fedorenko, P.Y., Peremetchyk, A.V., & Podoynitsina, T.O. (2020). Statistiko-imovirnosniy rozpodil prognoznikh kharakteristik zalizorudnikh rodovishch pri geometrizatsii nadr. Girnichy Visnik, (107), 32-36.
  7. Kobylkin, D., Zachko, O., Popovych, V., Burak N., Golovatyi, R., & Carsten, W. (2565). Models for changes management in infrastructure projects. CEUR Workshop Proceedings, (2565), 106-115.
  8. Stupnik, M., Kalinichenko, V, Pysmennyi S., Kalinichenko, О., & Fedko, M. (2016). Method of simulating rock mass stability in laboratory conditions using equivalent materials. Mining of Mineral Deposits, 10(3), 46-51. https://doi.org/10.15407/mining10.03.046
  9. Stupnіk, M.І., Kalіnіchenko, V.O., Kalіnіchenko, O.V., Muzika, І.O., Fed’ko, M.B., & Pismennyi, S.V. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and Mining Industry, (7), 377-383.
  10. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, (970), 012040. https://doi.org/10.1088/1755-1315/970/1/012040
  11. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org10.3390/min11080858
  12. Ghazdali, O., Moustadraf, J., Tagma, T., Alabjah, B., & Amraoui, F. (2021). Study and evaluation of the stability of underground mining method used in shallow-dip vein deposits hosted in poor quality rock. Mining of Mineral Deposits, 15(3), 31-38. https://doi.org/10.33271/mining15.03.031
  13. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable underground iron ore mining in ukraine with backfilling worked-out area. Sustainability, 13(2), 834. https://doi.org/10.3390/su13020834
  14. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining, 245-253. https://doi.org/10.1201/b11329-41
  15. Stupnik, N.I., Fedko, M.B., Kolosov, V.A., & Pismennyy, S.V. (2014). Razrabotka rekomendatsiy po vyboru tipa krepleniya gornykh vyrabotok i sopryazheniy v uslovii uranovykh shakht GP “VOSTGOK”. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-25.
  16. Shcherbakov, P., Tymchenko, S., Bitimbayev, M., Sarybayev, N., & Moldabayev, S. (2021). Mathematical model to optimize drilling-and-blasting operations in the process of open-pit hard rock mining. Mining of Mineral Deposits, 15(2), 25-34. https://doi.org/10.33271/mining15.02.025
  17. Fedko, M.B., Kolosov, V.A., Pismennyy, S.V., & Kalinichenko, Ye.A. (2014). Ekonomicheskiye aspekty perekhoda na bestrotilovyye vzryvchatyye veshchestva pri podzemnoy dobyche rud v Krivorozhskom basseyne. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-84.
  18. Abdullayev, S.S., Bakyt, G.B., Aikumbekov, M.N., Bondar, I.S., & Auyesbayev, Y.T. (2021). Determination of natural modes of railway overpasses. Journal of Applied Research and Technology, 19(1), 1-10. https://doi.org/10.22201/icat.24486736e.2021.19.1.1487
  19. Bakyt, G., Abdullayev, S., Suleyeva, N., Yelshibekov, A., Seidemetova, Z., & Sadvakassova, Z. (2020). Simulation of dynamic processes of interaction of car and railway track during train passage of curved sections of the track. Transport Problems, 15(2), 45-70. https://doi.org/10.21307/TP-2020-020
  20. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591. https://doi.org/10.3389/fenvs.2022.852591
  21. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  22. Bondarenko, V., Kovalevska, I., & Dychkovskyi, R.O. (2010). New techniques and technologies in mining. London, United States: CRC Press, Taylor & Francis Group, 266 p. https://doi.org/10.1201/b11329
  23. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniienko, V., & Abdiev, A. (2022). Analysis of the regularities of basalt open-pit fissility for energy efficiency of ore preparation. Mining of Mineral Deposits, 16(1), 68-76. https://doi.org/10.33271/mining16.01.068
  24. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8
  25. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kovbyk, K. (2019). Selective mining of complex stuctured ore deposits by open stope systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007
  26. Kulzhanova, Z.T., Kulzhanova, T.G., Mukhanbetkaliyev, Y.Y., Kakimzhanova, M.K., & Abdildina, K.S. (2020). Impact of technology on modern society – a philosophical analysis of the formation of technogenic environment. Media Watch, 11(3), 537-549. https://doi.org/10.17613/88tv-s258
  27. Moshynskyi, V., Malanchuk, Z., Tsymbaliuk, V., Malanchuk, L., Zhomyruk, R., & Vasylchuk, O. (2020). Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95-102. https://doi.org/10.33271/mining14.02.095
  28. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246
  29. David, M. (1980). Geostatisticheskie metody pri otsenke zapasov rud. Advanced Geostatistics in the Mining Industry.
  30. Matheron, G. (1982). Osnovy prikladnoy geostatistiki. Moskva, Rossiya: Mir, 408 s.
  31. Kim, H.S., Chung, C.K., & Kim, J.J. (2018). Three-dimensional geostatistical integration of borehole and geophysical datasets in developing geological unit boundaries for geotechnical investigations. Quarterly Journal of Engineering Geology and Hydrogeology, 51(1), 79-95 https://doi.org/10.1144/qjegh2016-012
  32. Blajda, R. (1993). The geometric-mathematical model of the zinc and lead ore deposits from the Olkusz region. Geological Quarterly, 37(2), 175-188.
  33. Groves, D.I., Santosh, M., Goldfarb, R.J., & Zhang, L. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontiers, 9(4), 1163-1177. https://doi.org/10.1016/j.gsf.2018.01.006
  34. Kim, H.S., Sun, C.G., & Cho, H.I. (2017). Geospatial big data-based geostatistical zonation of seismic site effects in Seoul metropolitan area. ISPRS International Journal of Geo-Information, 6(6), 174-191 https://doi.org/10.3390/ijgi6060174
  35. Yunsel, T. (2012). A practical application of geostatistical methods to quality and mineral reserve modelling of cement raw materials. Journal of the Southern African Institute of Mining and Metallurgy, 112(3), 239-249.
  36. Matheron, G. (1967). Kriging or polynomial interpolation procedures. CIMM Trans, (70), 240-244.
  37. Hekmatnejad, A., Emery, X., & Alipour-Shahsavari, M. (2019). Comparing linear and non-linear kriging for grade prediction and ore/waste classification in mineral deposits. International Journal of Mining, Reclamation and Environment, 33(4), 247-264. https://doi.org/10.1080/17480930.2017.1386430
  38. Huang, S., & Huaming, A. (2016). Application of geostatistics in the estimation of sujishan graphite deposits, Mongolia Stavebn’ı obzor. Civil Engineering Journal, (27), 487-499. https://doi.org/10.14311/CEJ.2018.04.0039
  39. Ivahnenko, A.G. (1982). Induktivnyy metod samoorganizatsii modeley slozhnykh sistem. Kyiv, Ukraina: Naukova dumka, 296 s.
  40. Shurygin, D.N., Vlasenko, S.V., & Shastik, D.S. (2014). Modelirovanie optimalnoy teoreticheskoy variogrammy moshhnosti plasta na osnove metoda gruppovogo ucheta argumentov. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya: Tekhnicheskie Nauki, 4(179), 76-78.
  41. Muravina, O.M., & Ponomarenko, I.A. (2016). Programmnaya realizatsiya metoda gruppovogo ucheta argumentov pri funktsional’nom modelirovanii geologo-geofizicheskikh dannykh. Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya Geologiya, (2), 107-110.
  42. Peremetchyk, A.V. (2004). Razrabotka evristicheskogo algoritma prognozirovaniya geologicheskikh pokazateley mestorozhdeniy poleznykh iskopayemykh. Razrabotka Rudnykh Mestrozhdeniy, (10), 194-200.
  43. Лицензия Creative Commons