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Abstract 

Purpose is development of the methods to predict indices of iron-ore deposits relying upon the improvement of available 

techniques as well as formulation of new geometrization procedures and identification of the most adequate decision-making 

way to assess geological data as the basis for geometrization and prediction. 

Methods are to develop a self-organizing prediction algorithm based upon combination of the available techniques and 

formulation of new mathematical methods; consider various means to assess them in the context of iron-ore deposit; and select 

the most efficient one. Use of geostatistical methods makes it possible to evaluate and process output geological information.  

The methods help assess mineral reserves of a mining enterprise. 

Findings. Dependencies of magnetite ore content upon geological factors have been derived in the context of an open pit of 

PIVDGZK JSC. The deposit has been geometrized; predictive mining and geometric model of the deposit site has been deve-

loped. Factors have been determined influencing the distribution nature of the indices. Graphs to arrange grade indices of the 

deposit have been constructed. The graphs have helped predict their placement within the deposit. 

Originality. A method to predict mining and geological indices of iron-ore deposit has been developed relaying upon a 

self-organizing algorithm. Correlation between grade indices of minerals and different geological factors has been determined 

making it possible to describe spatial distribution of grade indices of the deposit. 

Practical implications. Geometrization methods for iron-ore deposits have been formulated. The methods help schedule 

mining operations accurately while improving their efficiency. The developed predictive self-organizing algorithm is the flexi-

ble tool used for various mining and geological conditions to provide scheduling and assessing of different mining methods. 

The self-organizing as well as geostatic evaluation techniques is quite a promising research tendency. 

Keywords: self-organizing algorithm, geostatic methods, reserves, geometrization, grade indices, prediction 

 

1. Introduction 

Scheduling of operations as well as achieving of output 

with the specified content of useful component is one of the 

most important missions of mining. The abovementioned 

should involve systematic designing and modeling of a  

mining enterprise operations and production processes at the 

opening stage [1]-[4]. To solve the problem, the fullest idea 

of mining and geological conditions of a deposit is required 

in addition to its geometry and spatial arrangement of exca-

vating and technological indices. The data obtaining is sup-

ported by the methods of subsoil geometrization [5]-[8]. 

Various types of deposit geometrization are intended to 

solve mining problems both graphically and analytically. 

Determination of rock mass stability and its stress-strain state 

is quite an important problem solved with the help of geome-

trization methods [9]-[13]. Most of all, geometrization of 

geological forms and spatial distribution of rock mass char-

acteristics relies upon information concerning subsoil ar-

rangement of mining and geological indices. Use of extrac-

tion and geometric methods to develop models of rock mass 

characteristics and indices helps recommend certain 

measures aimed at the rock maintenance as well as stable 

mineral extraction under different mining and technological 

conditions [14]-[16]. Indices with similar distribution nature 

define both the procedure and the efficiency of drilling and 

blasting operations [17], [18], as well as transportation is-

sues [19], [20]. Geometrization is also vital for complex 

monitoring of rock mass state in the context of large-scale 

mining [21], [22]; in turn, the abovementioned identifies the 

methods controlling different mining processes [23], [24]. 

Geometrization of mineral deposit is based upon the data 

on geological, geochemical, geomechanical, and other fields 

characterizing various features and indices of rock mass, and 

sources of georesources. Reliability and accuracy of the 

information, its processing objectivity, and mining and geo-

logical indices as well as mineral occurrence conditions, 

determined as a result, will influence mining efficiency and 

the potential for selective extraction of the deposit mine-
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rals [25], [26]. Assessment of the accumulated technogenic 

mineral formations for their rational development [27], [28] 

is implemented with the help of geometrization techniques as 

well as calculation of rock amount and useful component 

being among the most interesting and helpful applications of 

subsoil geometrization. The geometrization techniques, 

providing the required accuracy to assess both actual and 

predictive amounts of a useful component, are the topical 

ones; moreover, they become more and more essential owing 

to growing demand for minerals. The most efficient methods, 

making it possible to assess volume of a useful component as 

well as its content while evaluating simultaneously the quali-

ty of output geological information, are based upon the geo-

static and comparable techniques [29]-[32]. 

Iron ore deposits demonstrate high discontinuity level of 

arrangement of its indices described on the basis of multidi-

mensional random geochemical field resulting in complex 

determination of their geometric location within a depo-

sit [33], [34]. To some extent, geometrization process of an 

iron ore deposits is always connected with a predictive spa-

tial position of its indices. For the purpose, various analytical 

and graphical techniques are applied differing in their accu-

racy and performance; the abovementioned influences direct-

ly on the efficiency of the mining scheduling. 

Analysis of the current methods of mining and geometric 

assessment of grade characteristics of mineral deposits helps 

conclude that geostatic kriging methods are the most ac-

ceptable ones for iron ore fields [35]-[39] since they make it 

possible to evaluate output geological data, accuracy of their 

formation, and the data applicability for geometrization and 

prediction of the deposit indicators. The techniques are ap-

plied to obtain analytical and graphical mining and geometric 

deposit models making it possible to improve scheduling 

efficiency of mining operations while advancing their pro-

duction indicators. 

The known predictive algorithms are based upon mathe-

matical statistics or upon a ready-made dependence being 

adapted to the developed model by means of the required 

minimum changes which cannot produce the desired results 

while considering rather complex processes inclusive of the 

geological ones. In part, self-organizing predictive algo-

rithms do not have any disadvantages; however, they are 

somewhat imperfect [40]-[42]. Such methods make it possi-

ble to take into consideration the factors influencing heavily 

accuracy of deposit evaluation as well as prediction of its 

grade indices. Generally, the processes take place owing to 

the fact that during the work calculation algorithm may opti-

mize itself, i.e. become self-organized. Hence, self-organized 

methods are more advantageous than classical geometrization 

and prediction methods. However, heuristic approaches also 

have a part of the listed disadvantages, demand a great deal of 

work to group the data, and have a small reliability range. 

Consequently, proceeding from the analysis of scientific 

sources, one can conclude that mining and geometric predic-

tion of grade mineral indices is the especially critical aspect 

concerning geometrization of iron ore deposits to solve both 

future and current scheduling problems for organization of 

the most efficient activities by mining enterprise in a mode of 

ore grade averaging while improving rationalization of a 

deposit development. Studies, aimed at formulation of mining 

and geometric method predicting grade indices of iron ore 

deposits, are rather topical. As the analysis explains, heuristic 

predictive methods and geostatic approaches assessing grade 

indices of iron ore indices are the most promising ones. The 

paper concerns formulation of a mining and geometric method 

to predict grade indices of iron ore deposits based upon the 

improved heuristic and geostatistical approaches. 

2. Methods 

The authors have developed multidimensional heuristic 

predictive algorithm based upon arbitrary the use of arbi-

trary-degree polynomial and determination of the optimal 

(1)-(3) function type [43]: 
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In the context of Expressions 1, 2 and 3, х1, х2, ..., хn  

values are the arguments upon which the predicted parameter 

P may depend. All the known parameters, being within the 

basic data set where the predictive function is under con-

struction, are assumed as arguments. In this case, they are 

geological indices in a point with the known P parameter as 

well as the planned and altitude coordinate sampling point. 

In addition, the arguments can be only the values known 

within the simulated data set for which P parameters should 

be predicted. аi, bi, ci, di, ei, g, and h values are numerical 

coefficients. р exponents are functions being similar in their 

structure to P (x1, x2, ..., xn) function. Despite equivalent 

terms, p values in Expressions 1-3 may have different values. 

n value is the number of arguments. m value, being a part of 

Expression 3, will be explained while considering a proce-

dure of the predictive function construction. 

The basic data set has been used to identify values of the 

predicted index Рm. Specify the values, calculated with the 

help of the predictive function, as Рc. Their difference is: 

i ii c mM Р Р = − .             (4) 

The predictive function is considered as the constructed if 

∑ |ΔMi| within the basic set of output data is minimal in 

terms of each unit of the output data. 

miniM = .              (5) 

The unit of output data is understood as a set of argu-

ments within a point with the known Рm value. 

In the simplest case, expression (1) may involve only one 

Expression of type 2. In this context, the Expression of 

type 2 may involve only one Expression of 3 type which, in 

turn, involves only one factor in round brackets and ci coeffi-

cient. Hence, start identifying a predictive function from the 

coefficient. It seems to be irrational idea at the very begin-

ning of the algorithm; nevertheless, it becomes very expedi-

ent while identifying function type of degree р indicators 

since the detailed examination of Expressions 1, 2 and 3 
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shows that order of p degrees may grow endlessly. The num-

ber of factors and additions in the predictive function may 

also be endless. 

Initial сi = 1 value is set to сi amount. In terms of each 

unit of output data, Рc, and ∑ |ΔMi|0 values are calculated for 

all the basic set of output data. 

Hence, following values are set to ci coefficient: 

1 0ji i jc c S
+

=  ,              (6) 

where: 

0
2

jj i iS c c= − ; 

0i is c= . 

If 
0

0ic = , then S1 = 1. 

1i
c  is calculated. In this context, (+) sign is applied in Ex-

pression 6. ΔMi and ∑ |ΔMi|1 values are calculated. Then 
2i

c  

value is determined. After that, ΔMi and ∑ |ΔMi|2 are calculated 

according to 
2i

c  value under (–) sign in Expression 6. As it 

follows from the subsequent, a predictive function may be 

discontinuous. Thus, the derived value interval ∑ |ΔMi|1, 

∑ |ΔMi|0 and ∑ |ΔMi|2 should be studied whether extrema are 

available. If for instance, ∑ |ΔMi|1 > ∑ |ΔMi|0 > ∑ |ΔMi|2 or on 

the contrary, it is supposed there are no extrema within the 

interval. ∑ |ΔMi|j = –1 value is defined. In this context, Expres-

sion 6 uses that very sign (+) or (–) which helped obtain the 

maximum value ∑ |ΔMi|1. If ∑ |ΔMi|j = – 1>Σ|ΔMi|1 then further 

calculations with the use of the sign in Expression 6 are ter-

minated. It results from the fact that relying upon Expres-

sion 6, 
1i

c  and 
2i

c  deviations from 
0i

c  are symmetrical ones. 

Further, Expression 6 is applied to identify new values 
jic  

and ∑ |ΔMi|j using (+) or (–), according to which the smallest 

∑ |ΔMi|2 value was obtained. It lasts until ∑ |ΔMi|j < ∑ |ΔMi|j –1 

condition is met. Otherwise, if ∑ |Mi|j  ∑ |ΔMi|j – 1 then the 

algorithm stops since it means that the considered interval 

includes extremum. If a computer has limited capabilities 

then we suppose it is in the interval between ∑ |ΔMi|j – 1 and 

∑ |ΔMi|j values. Nevertheless, Expression 6 explains that 

change in 
jic  doubles within each step. Thereby, the consi-

dered interval may involve more than one extremum. How-

ever, the calculated extremum may not match the actual one. 

It is required to find such an extremum corresponding to 

Condition 5. It is expedient to consider interval between 

1jic
=−

 value, matching ∑ |ΔMi|j = –1, and the last 
jic  value 

matching ∑ |ΔMi|j amount as two intervals. Interval one is 

between ∑ |ΔMi|j = –1 and a value marked as ∑ |ΔMi|j – 1; inter-

val two is between ∑ |ΔMi|j –1, and ∑ |ΔMi|j. Consider extre-

mum finding within interval one. The finding process is 

comparable within interval two. 

Extremum is found using the modified technique of a 

halving argument division. The difference between terminal 

values of 
1jic
−

 and 
1jic

=−
 interval is found; then it is divi-

ded into two. After that, the least is selected from 
1jic
−

 and 

1jic
=−

 volumes. It is added by the absolute value of the 

determined difference. Intermediate 
intiс  and corresponding 

∑ |ΔMi|int have been identified. Similarly, midpoints of the 

obtained 
int1iс  and 

int 2iс  intervals are determined as well as 

∑ |ΔMi|int 1 and ∑ |ΔMi|int 2 values corresponding to them. 
The smallest value is selected from the last ones.  

The interval with a larger value is excluded from  
calculations. The procedure is followed if  
∑ |ΔMi|j = –1 > ∑ |ΔMi|int 1 > ∑ |ΔMi|int > ∑ |ΔMi|int2 > ∑ |ΔMi|j –1 
condition is met, and vice versa depending upon the compu-
tation order. In the context of precious calculation technique, 
∑ |ΔMi|j= –1 > ∑ |ΔMi|j – 1 condition is always fulfilled. If any 
of intermediate ∑ |ΔMi|int values cannot match the abovemen-

tioned inequality then it is assumed that it divides [∑ |Mi|j= –1; 

∑ |Mi|j – 1] interval into two intervals, within which extrema 

is determined separately depending on corresponding 
jic . 

Each interval is studied until the difference between its ter-
minal values become less than the specified accuracy ε.  
ε may be considered as measuring accuracy of parameter P 
on the basic data set.  

Of all the identified extrema, that one is accepted which 
correspondence to Criterion 5 is the greatest. Starting from 
Expression 6, the described algorithm was constructed rely-
ing upon ∑ |ΔMi|1 > ∑ |ΔMi|0 > ∑ |ΔMi|2 inequality or vice 
versa. Criterion 5 defined the finding path. If the inequality 
could not be met then the abovementioned order is applied to 

search from ∑ |ΔMi|0 value and, accordingly 
0i

c  both to-

wards greater сi values and towards the smaller ones. Then 
Criterion 5 helps define the most expedient alternative. 

In the context of the two mentioned techniques (i.e. a 
technique of index doubling and a halving division tech-
nique), calculations are controlled according to a criterion of 
uniformity of algebraic ∑ ΔMi signs both during the current 
and previous step. If their ∑ ΔMi signs differ then deviation 
of the calculated index from the actual ∑ |ΔMi| indicator 
passed through its minimum and started increasing. In this 
case, an algorithm of double increase (decrease) stops and 
halving division algorithm starts for a local extremum deter-
mination within the interval of a varying coefficient identified 
with the help of a double increase (decrease) algorithm. The 
technique cannot take into consideration such an event when 
data vary symmetrically within each unit of the output data. 
Nevertheless, it is not important if Criterion 5 is involved. 

Searching for a predictive function type may use an algo-
rithm of double increase (decrease) of the desired coefficient 
in terms of all the available numerical coefficients; after that, 
halving division algorithm may start for each coefficient. The 
abovementioned will accelerate the algorithm on the whole; 
however, calculation accuracy may suffer. 

Specify the described sequence of steps as algorithm 1. 
Describe algorithm 2 neglecting explanation of further con-
struction of a predictive function during the stage. 

Use of algorithm 1 makes numerical coefficients vary in 
turns. Such a calculation manner cannot give optimum re-
sults since decrease in ∑ |ΔMi| may require simultaneous 
change in one and the same step of coefficient group. In this 
regard, their necessary changes may have different values as 
well as different directions. If one searches for direction and 
value of such changes with the help of simple iterations then 
minimum number of variants achieves An

n, i.e. amount of 
arrangements of n indices in terms of n. The procedure may 
complicate the calculations. Hence, it is required to select 
such coefficient groups which can vary as well as directions 
of the changes using another technique. 
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Assume that the predictive function takes the form in the 
context of which algorithm 1 cannot produce any results. 

In this case, ΔMi1 values are calculated within each unit 
of the output data. After that, all the numerical coefficients, 
included by the predictive function, are multiplied by 1.5. 
Then, ΔMi2 values are determined again. Any of the coeffi-
cients recovers its initial value. ΔMi3 values are defined. That 
very coefficient, but being already a part of output value of 
the function, is multiplied individually by 1.5; ΔMi4 values 
are calculated. Following indicators are identified for each 
unit of the output data: 

( ) ( )1 4 2 3i i i ii
M M M M M    = − + − .          (7) 

The closer absolute value of the bracketed one and two 
differences is, the more stable changes in ΔMi are within the 
considered unit of the output data depending upon variations 
in one or another coefficient under changes in all other coef-
ficients included in the predictive function. Theoretically, the 
two differences should be equal in the context of absolute 
value, and converse in terms of algebraic sign. It would mean 
that despite changes in a predictive function the analyzed 
coefficient gives the same variation in ΔMi in the context of 
its comparable change. 

After the procedure, all coefficients of the predictive 
function are halved and each of the listed operations is re-
peated; numerical coefficient remains invariable. The halving 
and multiplication by 1.5 is used to make coefficient in cases 
one and two vary symmetrically to output value. 

Then, ∑ |ΔM|i values, derived in the cases one and two for 
each unit of output data during the coefficient consideration, are 
added. ∑ (∑ |ΔM|i) value is identified required for further use. 

The procedures are performed for other coefficients in-
cluded by the predictive function. 

The listed operations are needed if only division by 1.5 and 
multiplication by 2 were not positive in terms of Criterion 5. If 
this is not the case then synchronous decrease or increase in 
the coefficients continues with simultaneous use of algorithm 
1 for each coefficient. 

Immediate search for optimum type of predictive func-
tion conforms to following order. The coefficient, according 
to which ∑ (∑ |ΔM|i) is minimal, is considered first of all. It 
is halved and all other coefficients are multiplied by 1.5. 
Inverse operation follows. Then it is divided by 2 and multi-
plied by 1.5 from similar value of the function. After that it 
lets alone; operations are performed with other coefficients. 
∑ |ΔMi| is calculated according to (4). Coefficient one can 
use ΔMi values identified while determining ∑(∑ |ΔM|I for it. 
(5) is applied to select the most appropriate variant. In such a 
way, direction of changes in the coefficient is determined as 
well as in the set of others.  

Next, algorithm 1 is brought into action taking into con-
sideration the determined directions of changes. In this case, 
the predictive function is searched from a value being the 
initial rate for the circumstances. Simultaneously, the select-
ed coefficient varies as well as the set of other coefficients. If 
the procedure is not successful in terms of Criterion 5 then 
following variant is selected according to the expediency. 

After searching through the listed calculation alternatives, 
one proceeds to a coefficient from the increasing number of 
∑ (∑ |ΔM|i). The calculation nature depends upon the fact that 
if previous coefficient where ∑ (∑ |ΔM|i) = min demonstrates 
positive results according to (5) then there is high probability 
that it will remain while defining following coefficients, i.e. a 
tendency of its required variation will not be altered. 

In the context of each of the coefficients (exclusive of the 

first one in the calculation procedure), the procedure of 

search for the change tendency should involve consideration 

of such alternatives when all coefficients experience either 

increase or decrease if the previous one varied. 

If all the coefficients have been examined with no posi-

tive results then the process is repeated in reverse, i.e. the 

coefficient where ∑ (∑ |ΔM|i) = mах is the first one to be 

considered. If no results are obtained then algorithm 1 is not 

applied for the calculations; however, the search for varia-

tions in the coefficient direction reminds a quantity being 

undesirable but the most adequate according to (5). It starts 

the computational procedure. As a last resort, synchronized 

variation in the same path of all the coefficients may be as-

sumed in terms of which one or another amount gives the 

best result while using algorithm 1. If no one of the listed 

variants is expedient then algorithm 2 stops. It is possible to 

enumerate many more computational procedures which are 

senseless for the paper. 

Describe a process of predictive function construction  

using algorithms 1 and 2. As it has been mentioned above, 

the process starts from сi coefficient according to algorithm 

1. After its optimum value has been defined, search for its 

equivalent coefficient at the p degree in terms of х1 (3) initi-

ates since the degree change gives the most sensible results. 

Next step is iteration with the first х1. It should be done until 

results are obtained. Then a new value of ci coefficients starts 

being searched for. It should be done since the calculation 

procedure may achieve some specific computational accura-

cy of Pci values known from the experience. Following cal-

culations may stop. If сi search is effective then its analogous 

values in the degrees under both x1 are defined again. If the 

procedure is not resultative then a11 and b11 coefficients are 

identified in turn. After that, the first is to calculate the value 

of the coefficient which was the most advantageous during 

the previous general step (5). If the process is not resultative 

then algorithm 2 starts operating. If it is resultative then algo-

rithm 1 is used as it has been mentioned earlier. The next 

step is search for ei modifier (2); the process is repeated. If 

no result is obtained then second bracket is added to Expres-

sion 3; the process is repeated starting from search for сi 

coefficients under х2, and then from a12 and b12 coefficients. 

Round brackets are added to Expression 3 until all х1, х2, ..., 

хn values are applied known within the basic output data set. 

After that search for сi starts in the degrees with round brack-

ets from the brackets which gave the best result. 

It is assumed in the calculation procedure that finding an 

even degree root from a negative number may be 0; 1; and –1 

value; the same being if a number value is positive; negative 

number value; and negative root value. It is assumed that 

fractional degree finding from zero may be equal to 0; 1; and 

–1. The abovementioned describe discontinuous dependence 

between the indicators. 

Two similar arguments in round Brackets 3 with similar 

indices, for instance ( )11 1 11 1

p
p p p p

a x b x +  , help the predictive 

function become very flexible since they reduce to different 

p degrees like a and b coefficients. It is especially important 

while giving discontinuity characteristics to a predictive 

function since owing to a and b coefficients in terms of cer-

tain x1 and x2 values, differing within the output data units, 

the expression in brackets may become of zero or negative 

value. Taking into consideration p degree behind the brack-
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ets, the expression in brackets may be disintegrated into any 

quantity of variables thus making it possible to apply (1)-(3) 

function to describe any mathematical dependence. 

Using all available coefficients of a predictive function, 

optimum values are defined with the help of algorithms 1 

and 2 in succession. In the context of algorithm 1, the search 

starts from the coefficients which were the most successful in 

the process of previous calculations. Then round brackets are 

added to (3) with a21; b21; ...; amn; and bmn coefficients. In this 

context, the new x1, x2, ..., xn coefficients are those ones 

which demonstrated the best results in the process of previ-

ous calculations. After that, (3) searches for types of func-

tions of p degrees under x1, x2, ..., xn as well as numerical 

coefficients in accordance with the abovementioned proce-

dure. Increase in the order of p degrees is unlimited. 

If f1 (x1, x2... xn) value, determined in such a way, is result 

less then construction of (1) starts to identify modifiers h and 

g. In the same way, (3) is added by all F1(x1, x2, ..., xn) values 

and rates of p degrees are defined. In general, predictive 

function is constructed increasing its complexity and un-

wieldiness with constant adaptation of earlier calculated 

coefficients in terms of prevalence criterion of coefficients 

from algorithm 1 demonstrated the best results in the process 

of earlier calculations. 

If the abovementioned ways could not improve the pre-

dictive function or the improvement turned out to be minor 

(i.e. it was improved by a value being less than ε rate de-

scribed in characterization of halving subalgorithm), it is 

time to proceed to algorithm 3. 

In the context of the available predictive function, each 

unit of output data involves algebraic ΔMi or 1 values. They 

are ranked depending upon their increase; then the closest of 

them are grouped in pairs. The grouped units of the output 

data may include quite different x1, x2 ... xn. For instance, their 

spatial distancing may be great. Hence, the grouping follows a 

criterion of the peak values of indices being measured. 

After each pair grouping starting from minimum ΔMi or 

values, the predictive function is searched separately. The 

procedure is based upon previously derived predictive func-

tion if it gave positive results according to (5). If not, the 

finding process starts again. 

In this context, the function, being analyzed within any 

unit of the output data, is added by a set of variable output 

data included by its paired unit. However, the function type 

for both units of the output data will be similar. The values 

within the paired unit are just put into a corresponding place 

of the predictive function while calculating the output data 

within the unit. If one assumes at least any differences in this 

part of a predictive function, involving variables being for-

eign for the output data units, then the function will trans-

form into two numerical equal to 
mi

P  coefficients. Such an 

addition of variables makes it possible to assess dependence 

between 
mi

P  values within the output data unit as well as 

between the values of variables in the output data unit which 

is the closest to this one relative to the general predictive 

function in terms of maximums of its values relying upon the 

grouping type. 

After that, the group moves one step up or down depen-

ding upon ΔMi or ranking. The grouping repeats. The grou-

ping variant is selected as the most relevant one from the 

viewpoint of Criterion 5. Then for each pair individually 

ΔMi or a dependence upon values of variables paired by 

means of algorithms 1 and 2 is derived. It should be done to 

find a sequence of similar grouping of the output data units 

within the modeled data set where 
mi

P  values are not availa-

ble rather than introduce modifications. The matter is that the 

modeled set of the output data may include such output data 

quantity differing from the basic ones, and follow the de-

pendence between indicators calculated within the basic set 

only in the form of a ratio rather than a ready addition. 

A function of ΔMi or dependence upon the values of va-

riables, being a part of a pair, involves all known values of 

the pair inclusive of 
ci

P  and exclusive of 
mi

P . 

After the grouping, new ΔMi or 2 values originate within 

the basic output data set. Stage two of the grouping starts. In 

turn, ΔMi or 2 rank in the increasing order. (4) helps calculate 

∑ |ΔM| value obtained during previous grouping step on the 

basic data set. The output data units are grouped depending 

upon the closest ΔMi or 2 above the values. The paper will not 

consider a potential for the output data set to group between 

themselves together with ΔMi or 1 and ΔMi or 2 criteria; however, 

it is quite a possible process. 

After the data grouping in terms of ΔMi or 2 criterion, two 

computational scenarios are probable. Scenario one is as 

follows. An output data unit is subtracted from a group de-

rived during stage one to be added to another group. Scenario 

two is fusion of two groups into one. The best option is se-

lected using Criterion 5. All the data, used for the transfer-

ring unit of the output data, are saved added by ΔMi or 1 value. 

The output predictive function is that one which satisfied (5) 

mostly at the previous stage. The function is added by varia-

bles; they are replaced by the data of neighboring units. 

During stage two ∑ |ΔMi| may increase since predictive 

functions become of more general nature. In such a case, 

grouping lasts until minimum accuracy, determined experi-

mentally, is obtained. It takes place because the less group 

number is within the basic set the easier it is to work with a 

set being modeled; nevertheless, that can be determined only 

in practice. The derived dependencies are substituted to the 

modeled set as follows. 

The dependence, obtained within the basic set, between 

the first by order minimum ΔMi or 1 value and its group varia-

bles during the initial grouping stage is substituted to the 

modeled set in any two units of output data. Then, one of the 

units lets alone and another unit is substituted by the follow-

ing one etc. In this manner, a group is selected matching 

mostly the dependence obtained within the basic set between 

ΔMi or 1 values and variables from the group. The derived unit 

of the output data within the modeled set lets alone; the first 

one is substituted by another which demonstrated the best 

result in the previous case while grouping from the first. If 

the result is worse than the previous one, the grouping pro-

cess stops. At the stage, the group is considered as the fin-

ished one. Similarly, all other groups are determined during 

stage one. If the modeled data set has more units of the out-

put data than the basic one then in turn the obtained groups 

are formed in such a way to be less in number to compare 

with the basic set. The difference between ΔMi or maximum 

and minimum is calculated relying upon the values obtained 

within the set being modeled while grouping. After that, it is 

divided into the number of groups obtained within the basic 

set during stage one. According to the interval, grouping 

takes place inside each period. Groups, obtained during stage 

one, are divided into two subgroups following a principle of 
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symmetry from inside. In the context of the subgroups, all 

indicators are averaged. In accordance with the abovemen-

tioned, the second grouping stage starts. 

The expected predictive accuracy is within the basic set at 

the last grouping stage for each group individually expressed in 

the form of dependence upon indicators included by the group. 

3. Results and discussion 

Geometrization and prediction are based upon geological 

prospecting of a deposit. 

One of the basic objectives of geological prospecting is 

description of arrangement regularities of deposit parameters 

(i.e. its foot and floor, thickness, content of useful and harm-

ful components etc.). In this context, prospecting should 

result in the required accuracy under less sampling points. 

Currently, iteration prospecting strategy is expedient. To 

obtain information on the geometry of deposit occurrence, 

the first prospecting stage is well drilling at large distances 

from each other. If prospecting purposes (i.e. accuracy of 

reserve determination and occurrence geometrization) are not 

achieved then the number of wells increases (i.e. average 

interval decreases). The prospecting results are assessed, a 

problem of further network densification is solved etc. 

While transiting from one prospecting stage to another, 

the interval (i.e. density of the exploration network) usually 

varies intermittently. Hence, it is required to assess accuracy 

at each stage. Selection of rational density of exploration 

network at one or another stage originates a reverse mission 

of interval determination according to the necessary accuracy.  

An exploration error consists of two components: repre-

sentativeness error and interpolation error.  

Representativeness error ( )2
R l  evaluates deviations of 

actual parameter variation along a profile line from the inter-

polated value between two measurement points. 

To evaluate ( )2
R l , following expression is often used: 

( ) ( )2 21
R K

K

l M
C

 = ,             (8) 

where: 

( )2 !

! !
K

K
C

K K
= ; 

Δ1 = x0 – xl, Δ2 = x0 – 2xl + x2l etc. and x0, xl, x2l are mea-

sured values of YP parameter along a profile line with l inter-

val; and М is mathematical expectation value. 

Use of Formula 8 raises a problem concerning K order of 

successive differences. K value selection depends upon a 

degree of algebraic polynom approximating the spacing. If 

one applies r order polynom to approximate the spacing then 

K = r + L. 

Interpolation error ( )2
j l  assesses deviations of actual 

values of Y parameter from an approximate Y1 values ob-

tained by means of linear interpolation right between two 

points of the parameter measurement: 

( ) ( )
22

1j l M Y Y = − .             (9) 

Prospecting error depends heavily upon the nature of ar-

rangement of deposit parameters. 

Spacing of any deposit parameter either in the direction 

of a plane or within it can be represented by means of a curve 

or a surface of more or less complex vibratory nature. Analy-

sis of such a curve or surface distinguishes natural, objective, 

and subjective variability components which grouping shows 

the observed variability. Natural variability is connected with 

observation methods; it is determined by means of the depos-

it genesis. The observed variability is a footprint of the natu-

ral variability in perception through the observation out-

comes. At following stages, it takes a form of mathematical 

or geometrical model generalizing the prospecting results. 

Along with the exploration model densification, subjective 

perception of the deposit parameter spacing approaches the 

objective one. However, their complete coincidence is im-

possible. Hence, deposit prospecting always involves certain 

degree of uncertainty as for the information on the regulari-

ties of spacing of one or another parameter either increasing 

or decreasing with the increased well number and shortening 

distance between them. There comes a point when observa-

tion results of a parameter start demonstrating regularity and 

a tendency originates. The exploration interval, in terms of 

which it happens, is a critical period or correlation radius lk. 

To define numerical value lk, the normalized autocorrela-

tion function is applied, which certain values are determined 

using the Formula: 

( ) ( )
( )

( )( )2
1

1 N k

x i i k
i

l k l u u u u
N k




−

+
=

= = − −
−

,        (10) 

where: 

1
iu u

n
=   is arithmetic average of observation series of 

the parameter; σ2 is dispersion of the series; k = 1, … N − 1 is 

exploration interval; and N is total number of exploration 

steps along the transverse section. 

The first value of the normalized autocorrelation coeffi-

cient, differing from zero in the process of the interval decree-

sing from N down to 0, denotes the critical interval value. 

The observed variability is divided into the random and 

regular ones. Separation of the types is based upon both 

interpretation of philosophical categories of random and 

regular, and upon mathematical criteria. 

Boundary of randomness (uncertainty) measure is a value 

of standard σ of the analyzed parameter rates. If exploration 

intervals excess lk then the regularity cannot be demonstrat-

ed. If exploration intervals are less than critical (0 < li < lk) 

then the regular and random components are in the certain 

ratio in the parameter spacing. It should be mentioned that in 

terms of even rather small test intervals l0 the spacing in-

volves random component 0 due to technical measuring 

errors depending upon the measurement type, mineral, sam-

ple geometry etc. 

Consequently, the regular (the coordinated and spatially 

correlative) variability is that one being characterized by 

smooth shift of a feature as well as stability of its increasing 

sign; in addition, it provides the ability to identify the feature 

value within the intermediate points between the observation 

points. Random variability is that one being characterized by 

nonavailability of any dependence between the feature values 

within two different points upon distances between the points 

as well as upon the distance to any other point which may be 

assumed as a datum point (origin of coordinates). 

Despite the significant diversity of mathematical criteria 

separating random component from the general variability 

assessment, the problem of qualitative variability evaluation 

while its dividing into random and regular is far from its 

satisfactory solution. 
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If the available exploration network involves distances, 

exceeding the critical prospecting interval (i.e. autocorrela-

tion radius), and it cannot expose regularities of an index 

spacing then it is required to make the network more dense 

which can be hardly implemented. If a random component 

prevails in the arrangement then it is necessary to smooth 

down the output data; nevertheless, the process results in loss 

or distortion of some share of the output geological infor-

mation. Among other things, it becomes impossible to define 

potential regularity as for the placement of extraordinary 

values of component content. 

Following methods help avoid the disadvantages. They 

are inverse distance method; method of autocorrelation func-

tions; and kriging. 

Inverse distance method is a technique for distance 

weighing to assess a mineral content within the regular-

shaped blocks. 

Average content of mineral components is determined as 

follows: 

1
1

1
1

n
i ii

n
ii

C d
C

d

−
=

−
=


=


.           (11) 

where: 

di – distance from the nearest wells to a block centre; 

n – number of the nearest wells. 

More general formula helps achieve higher accuracy: 

1

1

mn
i ii

mn
ii

C d
C

d

−
=

−
=


=


.           (12) 

where: 

m – results from calculation of minimal deviations of ac-

tual values of a block content for different values of statisti-

cal sampling. As a rule, m = 2. In such a way, the technique 

is a method of inverse quadratic distances. 

The method use should involve solving a problem of the 

nearest sampling selection. Hence, the number of the nearest 

samplings is identified as well as a range radius R taking into 

consideration density of the test network. 

Angular exclusion is applied for uniform sample ar-

rangement. The idea is as follows: a circle, drawn from a 

block centre, is separated into n number of equal sectors with 

the certain angle. The sample, being the nearest one to the 

centre, is identified within a sector plane. If one sample is in 

the central block share then average content will be identified 

with the help of it. To exclude influence of only one sample, 

its coordinates are shifted over following distance: 

4

d
x xc= +  and 

4

d
b yc= + ,          (13) 

where: 

х and b – coordinates of the block centre; 

d – length of the block side. 

Average С (%) content in a block is defined as follows: 

( ) ( ) ( )

( ) ( ) ( )

22 2
1 1 2 2 3 3

22 2
1 2 3

C d C d C d
C

d d d

−− −

−− −

 +  + 
=

+ +

.          (14) 

As for the modified method of inverse quadratic distan-

ces, it is used to determine different variability of a deposit 

extension (anisotropy). х and y axes are located towards 

minimum and maximum variabilities. 

For С1 sample, differing in the maximum variability, dis-

tance from a block doubles becoming 2d; for С2 sample, 

differing in minimum variability, distance from a block is d; 

and for С3, being of an average variability level, the distance 

is d = [(x3) + 2(y3)2]1/2. 

Hence, average С (%) content is: 

( ) ( ) ( )
( ) ( ) ( )

12 2 2 2
1 1 2 2 3 3 3

12 2 2 2
1 2 3 3

2 2 2

2 2 2

C d C d C x y
C

d d x y

−− −

−− −

 +  +  +
=

+ + +

.        (15) 

Inverse distance methods are applied only for small regu-

lar shape blocks. 

Method of autocorrelation functions is applied for depo-

sits with a simple form if thickness is uniform and viability 

of grade indices is minor. The method idea is as follows. 

According to well test data in the ith direction, the normalized 

function (i.e. correlation function) is constructed which value 

is determined relying upon its indicator variability as well as 

difference of distances between the test points: 

( )
( ) ( )
( )

0 0
1i i

n

x l x l
l

n t D


+
= 

− 
,          (16) 

where: 

х0 (li) – the centered value of the indicator; 

l0 – distance between neighboring numbers of the series; 

n and Dn – number and dispersion of the output data of 

the test; 

l – distance between the series numbers being analyzed 

(l = l0t; t = 1,2,3 ..., m; m < n). 

The normalized autocorrelation function is approximated 

in such a way: 

( ) cos cosel ke l c kg l c  −= + = = .         (17) 

Like in a net method, a block is networked. Indices with-

in the network nodes are determined while weighing indica-

tors in wells that surround the node. g = e–αe component is 

applied as the weight. 

The interpolated value of an index in the ith node is iden-

tified following the Formula: 

1

1

n
i ii

j n
ii

g z
z

g

=

=


=


,            (18) 

where: 

gi and zi – exponential components and values of the in-

dices within the neighboring wells. 

Geostatic method is the most accurate technique. Kriging 

is another name. 

Geostatic theory differs in: 

1) explicit mathematical definition; 

2) possible analytical form of all calculations as well as 

high degree to unify programs for data processing machines; 

3) while calculating reserves, average values of grade in-

dices are considered as functions of block geometry; ar-

rangement of the initial test data; and spatial variety of geo-

metrical characteristics are also involved. On the other hand, 

anisotropy, being a varying mineralization degree, is also 

taken into consideration. 

Kriging solves two key problems: 

1) determination of ore reserves; 

2) identification of the assessment accuracy. 
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Average content in a certain block is defined using the 

Formula: 

( )
1

n

i i
i

z a z x

=

=  ,           (19) 

where: 

z(хi) – mineral content in the samples; %; 

ai – is weighing (kriging) coefficient. 

а – coefficient is determined while solving a system of 

kriging equations. а value depends upon the grade characte-

ristics of content variety within the amount of the considered 

ore body as well as upon the block belonging. In this context, 

the basic purpose is to find such weighing coefficients owing 

to which the most adequate assessment may be achieved in 

addition to the least assessment error. 

There are several kriging modifications which selection 

depends upon numerous factors: exploration system, mining 

system, block geometry, mutual arrangement of the analyzed 

block, and test data involved in the assessment. 

Pivdgzk JSC open pit applied the developed mining and 

geometrical predictive method. The exploded rock mass was 

tested during exploration within the irregular shape areas as 

well as different cross-section dimensions. The detailed explo-

ration wells within the site were drilled through irregular test at 

50-200 m distances. Multidimensional prediction method as 

well as kriging has been applied to construct predictive func-

tion of useful mineral content and isoline of prognostic con-

tent. The degree of confidence to the results has been defined 

as that one inversely related to a distance from the centers of 

sites within which the exploded rock mass from the neighbor-

ing detailed exploration sites has been tested since the value 

had the greatest influence on the interpolation error. As a re-

sult, the most accurate outcomes had greater priority while 

assessing accuracy of the constructed predictive function. 

According to the known data, functional predictive de-

pendencies have been identified within the mined-out sites. 

Figures 1-3 demonstrate them. 

Consequently, functional dependencies between magnetic 

ore in the exploded rock mass and iron content in the context 

of deep exploration wells have been defined since among all 

algorithms, involved in the decision procedure, numerical 

coefficients have been indentified only for the values. The 

activities have helped group deposit sites according to the 

derived dependence; predictive results have been interpolated 

towards nodes of 50×50 m square network at a scale of 

1:2000 and a cross-section height of 0.5% content. 
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Figure 1. Dependence of magnetic ore content between the test 

results of the exploded rock mass and wells of deep  

exploration in terms of 165-180 m level in Pivdgzk JSC 

open pit 
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Figure 2. Dependence of magnetic ore content between the test 

results of the exploded rock mass and wells of deep  

exploration in terms of 180-195 m level in Pivdgzk JSC 

open pit 
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Figure 3. Dependence of magnetic ore content between the test 

results of the exploded rock mass and wells of deep  

exploration in terms of 195-210 m level in Pivdgzk JSC 

open pit 

According to the predictive procedure, square grid was 

used to define the forecast value of iron content connected 

with magnetite in the blasted rock mass. Kriging was used to 

interpolate the values which became the basis for long-term 

planning. The interpolation has helped construct isoline plan 

of predictive magnetic iron content (Figs. 4-6). 

Predictive data for the current planning were produced 

while specifying the obtained e-model in accordance with 

operational exploration within the points which spatial loca-

tion was determined relying upon production needs, and had 

irregular nature. The graphic and analytical prediction results 

were applied to solve mining and geometrical problem to 

plan extraction operations in the mode of the averaged con-

tent of a useful component, i.e. determination of optimum 

tendency and efficiency of mining relying upon both techno-

logical and economic indicators of the enterprise. 

In the context of the developed methods for long-term 

planning, relative error of the forecast concerning magnetic 

ore content is not more than 6.8%. Owing to the improved 

forecast, used as the basis for more accurate mining schedul-

ing, average ore loss coefficient within the deposit sites de-

creased by 0.03%; as for the ore dilution coefficient, its aver-

age decrease coefficient is also 0.03. 

As the study has shown, the predictive methods are quite 

efficient and applicable. The findings enable both current and 

long-term planning which improves efficiency of mining 

operations. The techniques, involved by the methods, ex-

pressed themselves positively. The abovementioned helps 

draw a conclusion on the necessity to improve and advance 

the techniques. 
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Figure 4. Isolines of predictive content of magnetic iron within 

165-180 m level in Pivdgzk JSC open pit 

 

Figure 5. Isolines of predictive content of magnetic iron within 

180-195 m level in Pivdgzk JSC open pit 

It will help optimize, progress, and develop the geometri-

zation and prediction methods for mineral deposit indicators 

while making them more effective and expedient in the con-

text of mining industry.  

 

Figure 6. Isolines of predictive content of magnetic iron within 

165-180 m level in Pivdgzk JSC open pit 

4. Conclusions 

Findings of the research have helped obtain regularities to 

improve the predictive efficiency to arrange grade indicators 

of iron-ore deposits. For the purpose, a multidimensional 

heuristic prediction technique was applied basing upon a 

random degree polynomial as well as geostatic methods 

providing significant increase in the forecast accuracy, and 

efficient use of the available surveying and geological data 

owing to quantification of qualitative genetic relationships 

between indicators. 

It is expedient to assume the indices coinciding in  

distribution law with the forecasted one as the arguments of 

the random degree polynomial as those ones having more 

probable regularity with spacing of the predicted compo-

nent of a mineral. 

The assessment of output surveying and geological data, 

obtained on the basis of irregular testing network, is suppor-

ted by kriging method being the most accurate among all 

known interpolation techniques. It is expedient to develop 

mining and geological deposit model relying upon the use of 

multidimensional random geochemical field. 

On the whole, the developed predictive methods are effi-

cient while matching mining needs. They help assess mineral 

reserves to improve significantly mining scheduling. Geo-

static methods make it possible to evaluate and process out-

put geological data. The developed self-organized predictive 

algorithm is flexible; in such a way, it can be applied under 

different mining and geological conditions to plan and evalu-

ate various mining techniques. Relying upon the results, the 

self-organized and geostatic methods are very promising 

tendency for future studies. The methods need further devel-

opment and perfection to improve their efficiency and use in 

the context of both ore and non-metallic minerals. 
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Прогнозна геометризація якісних показників залізорудного родовища 

А. Переметчик, О. Куліковська, Н. Швагер, С. Чухарев, С. Федоренко, Р. Морару, В. Панайотов 

Мета. Розробка методики прогнозування показників залізорудних родовищ на основі вдосконалення існуючих способів та 

створення нових методик геометризації, а також визначення найбільш прийнятного способу оцінки геологічних даних як основи 

для геометризації та прогнозування. 

Методика. Створення алгоритму прогнозування, що самоорганізується на основі сукупності відомих методів і розробки нових 

математичних методів. Розгляд різних способів оцінки даних геологічної розвідки, оцінка їхньої ефективності в умовах залізоруд-

ного родовища та вибір найбільш ефективного способу. Використання геостатистичних методів дає можливість оцінки та обробки 

вихідної геологічної інформації. Методика дозволяє оцінювати запаси корисних копалин гірничого підприємства. 

Результати. Отримано залежності вмісту магнетитового заліза на кар’єрі ПівдГЗК від геолого-технологічних факторів. Вико-

нано геометризацію родовища та отримано прогнозну гірничо-геометричну модель ділянки родовища. Виявлено чинники, що 

впливають на характер розподілу показників. Побудовано графіки розміщення якісних показників родовища, на основі чого вико-

нано прогноз їх розміщення у родовищі. 

Наукова новизна. Розроблено метод прогнозування гірничо-геологічних показників залізорудного родовища на основі алгори-

тму, що самоорганізується. Виявлено зв’язок між якісними показниками корисних копалин та різними геолого-технологічними 

факторами, що дозволяє описати просторовий розподіл якісних показників родовища. 

Практична значимість. Розроблено методику геометризації залізорудних родовищ, що дозволяє з високою точністю планувати 

гірничі роботи, а також підвищити їх ефективність. Розроблений алгоритм прогнозування, що самоорганізується, є гнучким у застосу-

ванні і може бути використаний в різних гірничо-геологічних умовах для забезпечення планування та оцінки різних технологій веден-

ня гірничих робіт. Самоорганізовані методи та геостатистичні методи оцінки є досить перспективним напрямом дослідження. 

Ключові слова: алгоритм що самоорганізується, геостатистичні методи, запаси, геометризація, якісні показники, прогнозування 


