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Abstract

Purpose is development of the methods to predict indices of iron-ore deposits relying upon the improvement of available
techniques as well as formulation of new geometrization procedures and identification of the most adequate decision-making
way to assess geological data as the basis for geometrization and prediction.

Methods are to develop a self-organizing prediction algorithm based upon combination of the available techniques and
formulation of new mathematical methods; consider various means to assess them in the context of iron-ore deposit; and select
the most efficient one. Use of geostatistical methods makes it possible to evaluate and process output geological information.
The methods help assess mineral reserves of a mining enterprise.

Findings. Dependencies of magnetite ore content upon geological factors have been derived in the context of an open pit of
PIVDGZK JSC. The deposit has been geometrized; predictive mining and geometric model of the deposit site has been deve-
loped. Factors have been determined influencing the distribution nature of the indices. Graphs to arrange grade indices of the
deposit have been constructed. The graphs have helped predict their placement within the deposit.

Originality. A method to predict mining and geological indices of iron-ore deposit has been developed relaying upon a
self-organizing algorithm. Correlation between grade indices of minerals and different geological factors has been determined
making it possible to describe spatial distribution of grade indices of the deposit.

Practical implications. Geometrization methods for iron-ore deposits have been formulated. The methods help schedule
mining operations accurately while improving their efficiency. The developed predictive self-organizing algorithm is the flexi-
ble tool used for various mining and geological conditions to provide scheduling and assessing of different mining methods.

The self-organizing as well as geostatic evaluation techniques is quite a promising research tendency.
Keywords: self-organizing algorithm, geostatic methods, reserves, geometrization, grade indices, prediction

1. Introduction

Scheduling of operations as well as achieving of output
with the specified content of useful component is one of the
most important missions of mining. The abovementioned
should involve systematic designing and modeling of a
mining enterprise operations and production processes at the
opening stage [1]-[4]. To solve the problem, the fullest idea
of mining and geological conditions of a deposit is required
in addition to its geometry and spatial arrangement of exca-
vating and technological indices. The data obtaining is sup-
ported by the methods of subsoil geometrization [5]-[8].

Various types of deposit geometrization are intended to
solve mining problems both graphically and analytically.
Determination of rock mass stability and its stress-strain state
is quite an important problem solved with the help of geome-
trization methods [9]-[13]. Most of all, geometrization of
geological forms and spatial distribution of rock mass char-
acteristics relies upon information concerning subsoil ar-
rangement of mining and geological indices. Use of extrac-

tion and geometric methods to develop models of rock mass
characteristics and indices helps recommend certain
measures aimed at the rock maintenance as well as stable
mineral extraction under different mining and technological
conditions [14]-[16]. Indices with similar distribution nature
define both the procedure and the efficiency of drilling and
blasting operations [17], [18], as well as transportation is-
sues [19], [20]. Geometrization is also vital for complex
monitoring of rock mass state in the context of large-scale
mining [21], [22]; in turn, the abovementioned identifies the
methods controlling different mining processes [23], [24].
Geometrization of mineral deposit is based upon the data
on geological, geochemical, geomechanical, and other fields
characterizing various features and indices of rock mass, and
sources of georesources. Reliability and accuracy of the
information, its processing objectivity, and mining and geo-
logical indices as well as mineral occurrence conditions,
determined as a result, will influence mining efficiency and
the potential for selective extraction of the deposit mine-
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rals [25], [26]. Assessment of the accumulated technogenic
mineral formations for their rational development [27], [28]
is implemented with the help of geometrization techniques as
well as calculation of rock amount and useful component
being among the most interesting and helpful applications of
subsoil geometrization. The geometrization techniques,
providing the required accuracy to assess both actual and
predictive amounts of a useful component, are the topical
ones; moreover, they become more and more essential owing
to growing demand for minerals. The most efficient methods,
making it possible to assess volume of a useful component as
well as its content while evaluating simultaneously the quali-
ty of output geological information, are based upon the geo-
static and comparable techniques [29]-[32].

Iron ore deposits demonstrate high discontinuity level of
arrangement of its indices described on the basis of multidi-
mensional random geochemical field resulting in complex
determination of their geometric location within a depo-
sit [33], [34]. To some extent, geometrization process of an
iron ore deposits is always connected with a predictive spa-
tial position of its indices. For the purpose, various analytical
and graphical techniques are applied differing in their accu-
racy and performance; the abovementioned influences direct-
ly on the efficiency of the mining scheduling.

Analysis of the current methods of mining and geometric
assessment of grade characteristics of mineral deposits helps
conclude that geostatic kriging methods are the most ac-
ceptable ones for iron ore fields [35]-[39] since they make it
possible to evaluate output geological data, accuracy of their
formation, and the data applicability for geometrization and
prediction of the deposit indicators. The techniques are ap-
plied to obtain analytical and graphical mining and geometric
deposit models making it possible to improve scheduling
efficiency of mining operations while advancing their pro-
duction indicators.

The known predictive algorithms are based upon mathe-
matical statistics or upon a ready-made dependence being
adapted to the developed model by means of the required
minimum changes which cannot produce the desired results
while considering rather complex processes inclusive of the
geological ones. In part, self-organizing predictive algo-
rithms do not have any disadvantages; however, they are
somewhat imperfect [40]-[42]. Such methods make it possi-
ble to take into consideration the factors influencing heavily
accuracy of deposit evaluation as well as prediction of its
grade indices. Generally, the processes take place owing to
the fact that during the work calculation algorithm may opti-
mize itself, i.e. become self-organized. Hence, self-organized
methods are more advantageous than classical geometrization
and prediction methods. However, heuristic approaches also
have a part of the listed disadvantages, demand a great deal of
work to group the data, and have a small reliability range.

Consequently, proceeding from the analysis of scientific
sources, one can conclude that mining and geometric predic-
tion of grade mineral indices is the especially critical aspect
concerning geometrization of iron ore deposits to solve both
future and current scheduling problems for organization of
the most efficient activities by mining enterprise in a mode of
ore grade averaging while improving rationalization of a
deposit development. Studies, aimed at formulation of mining
and geometric method predicting grade indices of iron ore
deposits, are rather topical. As the analysis explains, heuristic
predictive methods and geostatic approaches assessing grade
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indices of iron ore indices are the most promising ones. The
paper concerns formulation of a mining and geometric method
to predict grade indices of iron ore deposits based upon the
improved heuristic and geostatistical approaches.

2. Methods

The authors have developed multidimensional heuristic
predictive algorithm based upon arbitrary the use of arbi-
trary-degree polynomial and determination of the optimal

(2)-(3) function type [43]:
P

fi={ci"(a1"1x1"+bﬁxip)p-(afzx2p+ O

2%5

p p
(B 5B ) (i +b2xp ) ®
P p
x(azpzx,f+b2p2x§) ~...~(a£nxr?+brﬁnx,f’) }
F,(xl,xz,...,xn):dip[fl(xl,xz,...,xn)+ 2
+f2(x1,x2,...,xn)+...+fn(xl,xz,...,xn)]p+ep,
P(xl,xz,...,xn):gp[Fl(xl,xz,...,xn)+ .
+F2(xl,x2,...,xn)+...+Fn(xl,xz,...,xn)]p+hp.
In the context of Expressions1, 2 and 3, xi, x2, ..., Xn

values are the arguments upon which the predicted parameter
P may depend. All the known parameters, being within the
basic data set where the predictive function is under con-
struction, are assumed as arguments. In this case, they are
geological indices in a point with the known P parameter as
well as the planned and altitude coordinate sampling point.
In addition, the arguments can be only the values known
within the simulated data set for which P parameters should
be predicted. a;, bi, ci, di, €, g, and h values are numerical
coefficients. p exponents are functions being similar in their
structure to P (X1, X2, ..., Xn) function. Despite equivalent
terms, p values in Expressions 1-3 may have different values.
n value is the number of arguments. m value, being a part of
Expression 3, will be explained while considering a proce-
dure of the predictive function construction.

The basic data set has been used to identify values of the
predicted index Pm. Specify the values, calculated with the
help of the predictive function, as P.. Their difference is:

AMi:PCi _Pmi' (4)

The predictive function is considered as the constructed if
> |AMi| within the basic set of output data is minimal in
terms of each unit of the output data.

> AM; =min. (5)

The unit of output data is understood as a set of argu-
ments within a point with the known Py, value.

In the simplest case, expression (1) may involve only one
Expression of type 2. In this context, the Expression of
type 2 may involve only one Expression of 3 type which, in
turn, involves only one factor in round brackets and c; coeffi-
cient. Hence, start identifying a predictive function from the
coefficient. It seems to be irrational idea at the very begin-
ning of the algorithm; nevertheless, it becomes very expedi-
ent while identifying function type of degree p indicators
since the detailed examination of Expressions 1, 2 and 3



A. Peremetchyk et al. (2022). Mining of Mineral Deposits, 16(3), 67-77

shows that order of p degrees may grow endlessly. The num-
ber of factors and additions in the predictive function may
also be endless.

Initial ¢i =1 value is set to ¢i amount. In terms of each
unit of output data, Pc, and _ |4Milo values are calculated for
all the basic set of output data.

Hence, following values are set to ¢; coefficient:

Cij+1 =Ci0 iS] ) (6)
where:

S] =2‘Cij —Cio‘;

S = Cio .

If ¢, =0,then S = 1.

Ci1 is calculated. In this context, (+) sign is applied in Ex-

pression 6. AM; and > |[AMi|1 values are calculated. Then Ci,

value is determined. After that, AM; and > |AMi|, are calculated
according to Ci, value under (=) sign in Expression 6. As it

follows from the subsequent, a predictive function may be
discontinuous. Thus, the derived value interval } |[AMily,
> |AMijo and " |[AMi|. should be studied whether extrema are
available. If for instance, Y [AMi|1 > Y |[AMi|o > . |[AMi|2 or on
the contrary, it is supposed there are no extrema within the
interval. Y |AM;j|; =1 value is defined. In this context, Expres-
sion 6 uses that very sign (+) or (=) which helped obtain the
maximum value " |AMil1. If 3 |[AMi|j= - 1>Z|4AMi|, then further
calculations with the use of the sign in Expression 6 are ter-
minated. It results from the fact that relying upon Expres-
sion 6, ¢; and c;, deviations from ¢; are symmetrical ones.

Further, Expression 6 is applied to identify new values Ci;

and Y |[4AMil; using (+) or (-), according to which the smallest
> |[AMil2 value was obtained. It lasts until > |[AMij < ¥ |[AMi|; -1
condition is met. Otherwise, if Y |AMi|; > Y |[AMilj-1 then the
algorithm stops since it means that the considered interval
includes extremum. If a computer has limited capabilities
then we suppose it is in the interval between Y |[AMij-1 and
> |AM;|; values. Nevertheless, Expression 6 explains that
change in i doubles within each step. Thereby, the consi-

dered interval may involve more than one extremum. How-
ever, the calculated extremum may not match the actual one.
It is required to find such an extremum corresponding to
Condition 5. It is expedient to consider interval between

Cij}1 value, matching Y |[AMi|;=_1, and the last Cij value

matching > |4AM;|; amount as two intervals. Interval one is
between Y |4AMilj=_1 and a value marked as > |4AM;|;_1; inter-
val two is between Y |[AMij_1, and Y |[4AMj|;. Consider extre-
mum finding within interval one. The finding process is
comparable within interval two.

Extremum is found using the modified technique of a
halving argument division. The difference between terminal

values of Cij,l and Cij}1 interval is found; then it is divi-

ded into two. After that, the least is selected from C; i1 and

Cij:_1 volumes. It is added by the absolute value of the

determined difference. Intermediate Gt and corresponding
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> |[AMiline have been identified. Similarly, midpoints of the
obtained ¢; . and ¢, intervals are determined as well as

> |AMiline 1 @and Y |[AMilint 2 Values corresponding to them.

The smallest value is selected from the last ones.
The interval with a larger value is excluded from
calculations. The procedure is followed if
Y AMili=-1 > Y [AMilint1 > Y [AMilint > Y [AMiline > Y. [AMilj 1
condition is met, and vice versa depending upon the compu-
tation order. In the context of precious calculation technique,
> |AMilj=—1 > ¥ |[AMi|j—1 condition is always fulfilled. If any
of intermediate Y |[AMilin: values cannot match the abovemen-
tioned inequality then it is assumed that it divides [ |[AMi|j=_1;
> |AMi|j- 1] interval into two intervals, within which extrema

is determined separately depending on corresponding Cij-

Each interval is studied until the difference between its ter-
minal values become less than the specified accuracy e.
& may be considered as measuring accuracy of parameter P
on the basic data set.

Of all the identified extrema, that one is accepted which
correspondence to Criterion 5 is the greatest. Starting from
Expression 6, the described algorithm was constructed rely-
ing upon Y |AMi|1 >3 |[AMilo > > |AMi|2 inequality or vice
versa. Criterion 5 defined the finding path. If the inequality
could not be met then the abovementioned order is applied to
search from Y |[AMi|o value and, accordingly Ciy both to-

wards greater ¢; values and towards the smaller ones. Then
Criterion 5 helps define the most expedient alternative.

In the context of the two mentioned techniques (i.e. a
technique of index doubling and a halving division tech-
nique), calculations are controlled according to a criterion of
uniformity of algebraic 3 4M; signs both during the current
and previous step. If their 3 AM; signs differ then deviation
of the calculated index from the actual Y |[4Mj| indicator
passed through its minimum and started increasing. In this
case, an algorithm of double increase (decrease) stops and
halving division algorithm starts for a local extremum deter-
mination within the interval of a varying coefficient identified
with the help of a double increase (decrease) algorithm. The
technique cannot take into consideration such an event when
data vary symmetrically within each unit of the output data.
Nevertheless, it is not important if Criterion 5 is involved.

Searching for a predictive function type may use an algo-
rithm of double increase (decrease) of the desired coefficient
in terms of all the available numerical coefficients; after that,
halving division algorithm may start for each coefficient. The
abovementioned will accelerate the algorithm on the whole;
however, calculation accuracy may suffer.

Specify the described sequence of steps as algorithm 1.
Describe algorithm 2 neglecting explanation of further con-
struction of a predictive function during the stage.

Use of algorithm 1 makes numerical coefficients vary in
turns. Such a calculation manner cannot give optimum re-
sults since decrease in > |AMi| may require simultaneous
change in one and the same step of coefficient group. In this
regard, their necessary changes may have different values as
well as different directions. If one searches for direction and
value of such changes with the help of simple iterations then
minimum number of variants achieves A,", i.e. amount of
arrangements of n indices in terms of n. The procedure may
complicate the calculations. Hence, it is required to select
such coefficient groups which can vary as well as directions
of the changes using another technique.
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Assume that the predictive function takes the form in the
context of which algorithm 1 cannot produce any results.

In this case, 4Mi1 values are calculated within each unit
of the output data. After that, all the numerical coefficients,
included by the predictive function, are multiplied by 1.5.
Then, 4M;, values are determined again. Any of the coeffi-
cients recovers its initial value. 4M;z values are defined. That
very coefficient, but being already a part of output value of
the function, is multiplied individually by 1.5; AMis values
are calculated. Following indicators are identified for each
unit of the output data:

S|am| =‘(AMi1 —AM;, )+ (A, - am, )‘ . )

The closer absolute value of the bracketed one and two
differences is, the more stable changes in 4AM; are within the
considered unit of the output data depending upon variations
in one or another coefficient under changes in all other coef-
ficients included in the predictive function. Theoretically, the
two differences should be equal in the context of absolute
value, and converse in terms of algebraic sign. It would mean
that despite changes in a predictive function the analyzed
coefficient gives the same variation in AM; in the context of
its comparable change.

After the procedure, all coefficients of the predictive
function are halved and each of the listed operations is re-
peated; numerical coefficient remains invariable. The halving
and multiplication by 1.5 is used to make coefficient in cases
one and two vary symmetrically to output value.

Then, > |AM]; values, derived in the cases one and two for
each unit of output data during the coefficient consideration, are
added. > (3 |AM};) value is identified required for further use.

The procedures are performed for other coefficients in-
cluded by the predictive function.

The listed operations are needed if only division by 1.5 and
multiplication by 2 were not positive in terms of Criterion 5. If
this is not the case then synchronous decrease or increase in
the coefficients continues with simultaneous use of algorithm
1 for each coefficient.

Immediate search for optimum type of predictive func-
tion conforms to following order. The coefficient, according
to which Y. (3 |[AM];) is minimal, is considered first of all. It
is halved and all other coefficients are multiplied by 1.5.
Inverse operation follows. Then it is divided by 2 and multi-
plied by 1.5 from similar value of the function. After that it
lets alone; operations are performed with other coefficients.
> |AM| is calculated according to (4). Coefficient one can
use AM; values identified while determining >.(3_ |AM|; for it.
(5) is applied to select the most appropriate variant. In such a
way, direction of changes in the coefficient is determined as
well as in the set of others.

Next, algorithm 1 is brought into action taking into con-
sideration the determined directions of changes. In this case,
the predictive function is searched from a value being the
initial rate for the circumstances. Simultaneously, the select-
ed coefficient varies as well as the set of other coefficients. If
the procedure is not successful in terms of Criterion 5 then
following variant is selected according to the expediency.

After searching through the listed calculation alternatives,
one proceeds to a coefficient from the increasing number of
> (X |[AM[i). The calculation nature depends upon the fact that
if previous coefficient where > (3 |[AM[i) = min demonstrates
positive results according to (5) then there is high probability
that it will remain while defining following coefficients, i.e. a
tendency of its required variation will not be altered.
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In the context of each of the coefficients (exclusive of the
first one in the calculation procedure), the procedure of
search for the change tendency should involve consideration
of such alternatives when all coefficients experience either
increase or decrease if the previous one varied.

If all the coefficients have been examined with no posi-
tive results then the process is repeated in reverse, i.e. the
coefficient where Y (3 |[AM|i) = max is the first one to be
considered. If no results are obtained then algorithm 1 is not
applied for the calculations; however, the search for varia-
tions in the coefficient direction reminds a quantity being
undesirable but the most adequate according to (5). It starts
the computational procedure. As a last resort, synchronized
variation in the same path of all the coefficients may be as-
sumed in terms of which one or another amount gives the
best result while using algorithm 1. If no one of the listed
variants is expedient then algorithm 2 stops. It is possible to
enumerate many more computational procedures which are
senseless for the paper.

Describe a process of predictive function construction
using algorithms 1 and 2. As it has been mentioned above,
the process starts from ¢; coefficient according to algorithm
1. After its optimum value has been defined, search for its
equivalent coefficient at the p degree in terms of x1 (3) initi-
ates since the degree change gives the most sensible results.
Next step is iteration with the first x1. It should be done until
results are obtained. Then a new value of c; coefficients starts
being searched for. It should be done since the calculation
procedure may achieve some specific computational accura-
cy of P values known from the experience. Following cal-
culations may stop. If ¢; search is effective then its analogous
values in the degrees under both x; are defined again. If the
procedure is not resultative then ai;; and bi; coefficients are
identified in turn. After that, the first is to calculate the value
of the coefficient which was the most advantageous during
the previous general step (5). If the process is not resultative
then algorithm 2 starts operating. If it is resultative then algo-
rithm 1 is used as it has been mentioned earlier. The next
step is search for e; modifier (2); the process is repeated. If
no result is obtained then second bracket is added to Expres-
sion 3; the process is repeated starting from search for c;
coefficients under x», and then from ai» and bi, coefficients.
Round brackets are added to Expression 3 until all x1, xz, ...,
xn values are applied known within the basic output data set.
After that search for ¢; starts in the degrees with round brack-
ets from the brackets which gave the best result.

It is assumed in the calculation procedure that finding an
even degree root from a negative number may be 0; 1; and -1
value; the same being if a number value is positive; negative
number value; and negative root value. It is assumed that
fractional degree finding from zero may be equal to 0; 1; and
-1. The abovementioned describe discontinuous dependence
between the indicators.

Two similar arguments in round Brackets 3 with similar

p
indices, for instance (alpl xP +b- xlp) , help the predictive

function become very flexible since they reduce to different
p degrees like a and b coefficients. It is especially important
while giving discontinuity characteristics to a predictive
function since owing to a and b coefficients in terms of cer-
tain x1 and x2 values, differing within the output data units,
the expression in brackets may become of zero or negative
value. Taking into consideration p degree behind the brack-
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ets, the expression in brackets may be disintegrated into any
quantity of variables thus making it possible to apply (1)-(3)
function to describe any mathematical dependence.

Using all available coefficients of a predictive function,
optimum values are defined with the help of algorithms 1
and 2 in succession. In the context of algorithm 1, the search
starts from the coefficients which were the most successful in
the process of previous calculations. Then round brackets are
added to (3) with azi; bai; ...; amn; and bmn coefficients. In this
context, the new Xi, Xz, ..., Xn coefficients are those ones
which demonstrated the best results in the process of previ-
ous calculations. After that, (3) searches for types of func-
tions of p degrees under xi, Xz, ..., Xn as well as numerical
coefficients in accordance with the abovementioned proce-
dure. Increase in the order of p degrees is unlimited.

If f1 (X1, Xo... Xn) Value, determined in such a way, is result
less then construction of (1) starts to identify modifiers h and
g. In the same way, (3) is added by all Fi(x1, X2, ..., Xn) Values
and rates of p degrees are defined. In general, predictive
function is constructed increasing its complexity and un-
wieldiness with constant adaptation of earlier calculated
coefficients in terms of prevalence criterion of coefficients
from algorithm 1 demonstrated the best results in the process
of earlier calculations.

If the abovementioned ways could not improve the pre-
dictive function or the improvement turned out to be minor
(i.e. it was improved by a value being less than ¢ rate de-
scribed in characterization of halving subalgorithm), it is
time to proceed to algorithm 3.

In the context of the available predictive function, each
unit of output data involves algebraic AMj 1 values. They
are ranked depending upon their increase; then the closest of
them are grouped in pairs. The grouped units of the output
data may include quite different xi, Xz ... Xn. For instance, their
spatial distancing may be great. Hence, the grouping follows a
criterion of the peak values of indices being measured.

After each pair grouping starting from minimum AM; o
values, the predictive function is searched separately. The
procedure is based upon previously derived predictive func-
tion if it gave positive results according to (5). If not, the
finding process starts again.

In this context, the function, being analyzed within any
unit of the output data, is added by a set of variable output
data included by its paired unit. However, the function type
for both units of the output data will be similar. The values
within the paired unit are just put into a corresponding place
of the predictive function while calculating the output data
within the unit. If one assumes at least any differences in this
part of a predictive function, involving variables being for-
eign for the output data units, then the function will trans-
form into two numerical equal to R coefficients. Such an

addition of variables makes it possible to assess dependence
between R values within the output data unit as well as

between the values of variables in the output data unit which
is the closest to this one relative to the general predictive
function in terms of maximums of its values relying upon the
grouping type.

After that, the group moves one step up or down depen-
ding upon AM; ranking. The grouping repeats. The grou-
ping variant is selected as the most relevant one from the
viewpoint of Criterion 5. Then for each pair individually
AMio a dependence upon values of variables paired by
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means of algorithms 1 and 2 is derived. It should be done to
find a sequence of similar grouping of the output data units
within the modeled data set where R values are not availa-

ble rather than introduce modifications. The matter is that the
modeled set of the output data may include such output data
quantity differing from the basic ones, and follow the de-
pendence between indicators calculated within the basic set
only in the form of a ratio rather than a ready addition.

A function of AM;, dependence upon the values of va-
riables, being a part of a pair, involves all known values of
the pair inclusive of B _ and exclusive of R .

After the grouping, new AMi 2 values originate within
the basic output data set. Stage two of the grouping starts. In
turn, AMior2 rank in the increasing order. (4) helps calculate
> |AM| value obtained during previous grouping step on the
basic data set. The output data units are grouped depending
upon the closest AM; o2 above the values. The paper will not
consider a potential for the output data set to group between
themselves together with AM; o1 and AMi o2 criteria; however,
it is quite a possible process.

After the data grouping in terms of AM;» criterion, two
computational scenarios are probable. Scenario one is as
follows. An output data unit is subtracted from a group de-
rived during stage one to be added to another group. Scenario
two is fusion of two groups into one. The best option is se-
lected using Criterion 5. All the data, used for the transfer-
ring unit of the output data, are saved added by AMi 1 value.
The output predictive function is that one which satisfied (5)
mostly at the previous stage. The function is added by varia-
bles; they are replaced by the data of neighboring units.

During stage two Y |[AMi| may increase since predictive
functions become of more general nature. In such a case,
grouping lasts until minimum accuracy, determined experi-
mentally, is obtained. It takes place because the less group
number is within the basic set the easier it is to work with a
set being modeled; nevertheless, that can be determined only
in practice. The derived dependencies are substituted to the
modeled set as follows.

The dependence, obtained within the basic set, between
the first by order minimum 4M; 1 value and its group varia-
bles during the initial grouping stage is substituted to the
modeled set in any two units of output data. Then, one of the
units lets alone and another unit is substituted by the follow-
ing one etc. In this manner, a group is selected matching
mostly the dependence obtained within the basic set between
AMi or 1 Values and variables from the group. The derived unit
of the output data within the modeled set lets alone; the first
one is substituted by another which demonstrated the best
result in the previous case while grouping from the first. If
the result is worse than the previous one, the grouping pro-
cess stops. At the stage, the group is considered as the fin-
ished one. Similarly, all other groups are determined during
stage one. If the modeled data set has more units of the out-
put data than the basic one then in turn the obtained groups
are formed in such a way to be less in number to compare
with the basic set. The difference between AM;o maximum
and minimum is calculated relying upon the values obtained
within the set being modeled while grouping. After that, it is
divided into the number of groups obtained within the basic
set during stage one. According to the interval, grouping
takes place inside each period. Groups, obtained during stage
one, are divided into two subgroups following a principle of
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symmetry from inside. In the context of the subgroups, all
indicators are averaged. In accordance with the abovemen-
tioned, the second grouping stage starts.

The expected predictive accuracy is within the basic set at
the last grouping stage for each group individually expressed in
the form of dependence upon indicators included by the group.

3. Results and discussion

Geometrization and prediction are based upon geological
prospecting of a deposit.

One of the basic objectives of geological prospecting is
description of arrangement regularities of deposit parameters
(i.e. its foot and floor, thickness, content of useful and harm-
ful components etc.). In this context, prospecting should
result in the required accuracy under less sampling points.

Currently, iteration prospecting strategy is expedient. To
obtain information on the geometry of deposit occurrence,
the first prospecting stage is well drilling at large distances
from each other. If prospecting purposes (i.e. accuracy of
reserve determination and occurrence geometrization) are not
achieved then the number of wells increases (i.e. average
interval decreases). The prospecting results are assessed, a
problem of further network densification is solved etc.

While transiting from one prospecting stage to another,
the interval (i.e. density of the exploration network) usually
varies intermittently. Hence, it is required to assess accuracy
at each stage. Selection of rational density of exploration
network at one or another stage originates a reverse mission
of interval determination according to the necessary accuracy.

An exploration error consists of two components: repre-

sentativeness error and interpolation error.
Representativeness error o-é (1) evaluates deviations of

actual parameter variation along a profile line from the inter-
polated value between two measurement points.

To evaluate o-,% (1), following expression is often used:

aauzé%M(ﬁ), (8)
where:
~(2K)r
Sk = KK

A1 = Xo—Xi, A2 = Xo — 2Xi + Xz1 etc. and Xo, Xi, X21 are mea-
sured values of Yp parameter along a profile line with I inter-
val; and M is mathematical expectation value.

Use of Formula 8 raises a problem concerning K order of
successive differences. K value selection depends upon a
degree of algebraic polynom approximating the spacing. If
one applies r order polynom to approximate the spacing then
K=r+L.

2

Interpolation error o (I) assesses deviations of actual

values of Y parameter from an approximate Y; values ob-
tained by means of linear interpolation right between two
points of the parameter measurement:

2 (=M (Y -Y)%. ©)
Prospecting error depends heavily upon the nature of ar-
rangement of deposit parameters.
Spacing of any deposit parameter either in the direction
of a plane or within it can be represented by means of a curve
or a surface of more or less complex vibratory nature. Analy-
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sis of such a curve or surface distinguishes natural, objective,
and subjective variability components which grouping shows
the observed variability. Natural variability is connected with
observation methods; it is determined by means of the depos-
it genesis. The observed variability is a footprint of the natu-
ral variability in perception through the observation out-
comes. At following stages, it takes a form of mathematical
or geometrical model generalizing the prospecting results.
Along with the exploration model densification, subjective
perception of the deposit parameter spacing approaches the
objective one. However, their complete coincidence is im-
possible. Hence, deposit prospecting always involves certain
degree of uncertainty as for the information on the regulari-
ties of spacing of one or another parameter either increasing
or decreasing with the increased well number and shortening
distance between them. There comes a point when observa-
tion results of a parameter start demonstrating regularity and
a tendency originates. The exploration interval, in terms of
which it happens, is a critical period or correlation radius l.

To define numerical value li, the normalized autocorrela-
tion function is applied, which certain values are determined
using the Formula:

px(1)=k(1)=

where:

-G 3)

i=1

1

- 10
O'Z(N—k) (0

-1 . . . . .
u==Xu; is arithmetic average of observation series of
n

the parameter; o is dispersion of the series; k=1, ... N -1is
exploration interval; and Nis total number of exploration
steps along the transverse section.

The first value of the normalized autocorrelation coeffi-
cient, differing from zero in the process of the interval decree-
sing from N down to O, denotes the critical interval value.

The observed variability is divided into the random and
regular ones. Separation of the types is based upon both
interpretation of philosophical categories of random and
regular, and upon mathematical criteria.

Boundary of randomness (uncertainty) measure is a value
of standard o of the analyzed parameter rates. If exploration
intervals excess Ik then the regularity cannot be demonstrat-
ed. If exploration intervals are less than critical (0 <l < ly)
then the regular and random components are in the certain
ratio in the parameter spacing. It should be mentioned that in
terms of even rather small test intervals lo the spacing in-
volves random component op due to technical measuring
errors depending upon the measurement type, mineral, sam-
ple geometry etc.

Consequently, the regular (the coordinated and spatially
correlative) variability is that one being characterized by
smooth shift of a feature as well as stability of its increasing
sign; in addition, it provides the ability to identify the feature
value within the intermediate points between the observation
points. Random variability is that one being characterized by
nonavailability of any dependence between the feature values
within two different points upon distances between the points
as well as upon the distance to any other point which may be
assumed as a datum point (origin of coordinates).

Despite the significant diversity of mathematical criteria
separating random component from the general variability
assessment, the problem of qualitative variability evaluation
while its dividing into random and regular is far from its
satisfactory solution.



A. Peremetchyk et al. (2022). Mining of Mineral Deposits, 16(3), 67-77

If the available exploration network involves distances,
exceeding the critical prospecting interval (i.e. autocorrela-
tion radius), and it cannot expose regularities of an index
spacing then it is required to make the network more dense
which can be hardly implemented. If a random component
prevails in the arrangement then it is necessary to smooth
down the output data; nevertheless, the process results in loss
or distortion of some share of the output geological infor-
mation. Among other things, it becomes impossible to define
potential regularity as for the placement of extraordinary
values of component content.

Following methods help avoid the disadvantages. They
are inverse distance method; method of autocorrelation func-
tions; and kriging.

Inverse distance method is a technique for distance
weighing to assess a mineral content within the regular-
shaped blocks.

Average content of mineral components is determined as
follows:

1iCidi

n -1
izldl

C= (11)

where:
di — distance from the nearest wells to a block centre;
n — number of the nearest wells.
More general formula helps achieve higher accuracy:

SCi-di ™

‘ (12
Ldi

where:

m — results from calculation of minimal deviations of ac-
tual values of a block content for different values of statisti-
cal sampling. As a rule, m = 2. In such a way, the technique
is a method of inverse quadratic distances.

The method use should involve solving a problem of the
nearest sampling selection. Hence, the number of the nearest
samplings is identified as well as a range radius R taking into
consideration density of the test network.

Angular exclusion is applied for uniform sample ar-
rangement. The idea is as follows: a circle, drawn from a
block centre, is separated into n number of equal sectors with
the certain angle. The sample, being the nearest one to the
centre, is identified within a sector plane. If one sample is in
the central block share then average content will be identified
with the help of it. To exclude influence of only one sample,
its coordinates are shifted over following distance:

d d
X xc+4 and b yc+4 , (13)
where:

x and b — coordinates of the block centre;

d — length of the block side.

Average C (%) content in a block is defined as follows:

.. Cro(dy) 2 +Cy () 2 +Cy(d3) |
(d) 2 +(dp)? +(d3)_2

As for the modified method of inverse quadratic distan-
ces, it is used to determine different variability of a deposit
extension (anisotropy). x and y axes are located towards
minimum and maximum variabilities.

(14)
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For Ci1 sample, differing in the maximum variability, dis-
tance from a block doubles becoming 2d; for C, sample,
differing in minimum variability, distance from a block is d;
and for Cs, being of an average variability level, the distance
is d = [(xa) + 2(ys)’]">.

Hence, average C (%) content is:

-1
c Cl'(Zdl)_2+C2'(2d2)_2+C3'(X32+2y§)

-2 -2 2 2 -1 (15)
(2d;) “ +(2d,) +(x3+2y3)

Inverse distance methods are applied only for small regu-
lar shape blocks.

Method of autocorrelation functions is applied for depo-
sits with a simple form if thickness is uniform and viability
of grade indices is minor. The method idea is as follows.
According to well test data in the i direction, the normalized
function (i.e. correlation function) is constructed which value
is determined relying upon its indicator variability as well as
difference of distances between the test points:

p(h=x>—" ((:{13 S:l)
where:

x° (I) — the centered value of the indicator;

lp — distance between neighboring numbers of the series;

n and D, —number and dispersion of the output data of
the test;

| —distance between the series numbers being analyzed
(I=lt;t=1,23..,m;m<n).

The normalized autocorrelation function is approximated
in such a way:

, (16)

p(1)=ke™*®cos Bl +c=kgcos Al =c . A7)

Like in a net method, a block is networked. Indices with-
in the network nodes are determined while weighing indica-
tors in wells that surround the node. g = e component is
applied as the weight.

The interpolated value of an index in the i node is iden-
tified following the Formula:

o Zin=19i Zi
! zin=1gi

where:

gi and z — exponential components and values of the in-
dices within the neighboring wells.

Geostatic method is the most accurate technique. Kriging
is another name.

Geostatic theory differs in:

1) explicit mathematical definition;

2) possible analytical form of all calculations as well as
high degree to unify programs for data processing machines;

3) while calculating reserves, average values of grade in-
dices are considered as functions of block geometry; ar-
rangement of the initial test data; and spatial variety of geo-
metrical characteristics are also involved. On the other hand,
anisotropy, being a varying mineralization degree, is also
taken into consideration.

Kriging solves two key problems:

1) determination of ore reserves;

2) identification of the assessment accuracy.

(18)
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Average content in a certain block is defined using the
Formula:

z =£}ai-z(xi), (19)
-1

where:

Z(x;) — mineral content in the samples; %;

a; — is weighing (kriging) coefficient.

a — coefficient is determined while solving a system of
kriging equations. a value depends upon the grade characte-
ristics of content variety within the amount of the considered
ore body as well as upon the block belonging. In this context,
the basic purpose is to find such weighing coefficients owing
to which the most adequate assessment may be achieved in
addition to the least assessment error.

There are several kriging modifications which selection
depends upon numerous factors: exploration system, mining
system, block geometry, mutual arrangement of the analyzed
block, and test data involved in the assessment.

Pivdgzk JSC open pit applied the developed mining and
geometrical predictive method. The exploded rock mass was
tested during exploration within the irregular shape areas as
well as different cross-section dimensions. The detailed explo-
ration wells within the site were drilled through irregular test at
50-200 m distances. Multidimensional prediction method as
well as kriging has been applied to construct predictive func-
tion of useful mineral content and isoline of prognostic con-
tent. The degree of confidence to the results has been defined
as that one inversely related to a distance from the centers of
sites within which the exploded rock mass from the neighbor-
ing detailed exploration sites has been tested since the value
had the greatest influence on the interpolation error. As a re-
sult, the most accurate outcomes had greater priority while
assessing accuracy of the constructed predictive function.

According to the known data, functional predictive de-
pendencies have been identified within the mined-out sites.
Figures 1-3 demonstrate them.

Consequently, functional dependencies between magnetic
ore in the exploded rock mass and iron content in the context
of deep exploration wells have been defined since among all
algorithms, involved in the decision procedure, numerical
coefficients have been indentified only for the values. The
activities have helped group deposit sites according to the
derived dependence; predictive results have been interpolated
towards nodes of 50x50 m square network at a scale of
1:2000 and a cross-section height of 0.5% content.
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Figure 1. Dependence of magnetic ore content between the test
results of the exploded rock mass and wells of deep
exploration in terms of 165-180 m level in Pivdgzk JSC
open pit
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Figure 3. Dependence of magnetic ore content between the test
results of the exploded rock mass and wells of deep
exploration in terms of 195-210 m level in Pivdgzk JSC
open pit

According to the predictive procedure, square grid was
used to define the forecast value of iron content connected
with magnetite in the blasted rock mass. Kriging was used to
interpolate the values which became the basis for long-term
planning. The interpolation has helped construct isoline plan
of predictive magnetic iron content (Figs. 4-6).

Predictive data for the current planning were produced
while specifying the obtained e-model in accordance with
operational exploration within the points which spatial loca-
tion was determined relying upon production needs, and had
irregular nature. The graphic and analytical prediction results
were applied to solve mining and geometrical problem to
plan extraction operations in the mode of the averaged con-
tent of a useful component, i.e. determination of optimum
tendency and efficiency of mining relying upon both techno-
logical and economic indicators of the enterprise.

In the context of the developed methods for long-term
planning, relative error of the forecast concerning magnetic
ore content is not more than 6.8%. Owing to the improved
forecast, used as the basis for more accurate mining schedul-
ing, average ore loss coefficient within the deposit sites de-
creased by 0.03%; as for the ore dilution coefficient, its aver-
age decrease coefficient is also 0.03.

As the study has shown, the predictive methods are quite
efficient and applicable. The findings enable both current and
long-term planning which improves efficiency of mining
operations. The techniques, involved by the methods, ex-
pressed themselves positively. The abovementioned helps
draw a conclusion on the necessity to improve and advance
the techniques.



A. Peremetchyk et al. (2022). Mining of Mineral Deposits, 16(3), 67-77

Figure 5. Isolines of predictive content of magnetic iron within
180-195 m level in Pivdgzk JSC open pit

It will help optimize, progress, and develop the geometri-
zation and prediction methods for mineral deposit indicators
while making them more effective and expedient in the con-
text of mining industry.
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Figure 6. Isolines of predictive content of magnetic iron within
165-180 m level in Pivdgzk JSC open pit

4. Conclusions

Findings of the research have helped obtain regularities to
improve the predictive efficiency to arrange grade indicators
of iron-ore deposits. For the purpose, a multidimensional
heuristic prediction technique was applied basing upon a
random degree polynomial as well as geostatic methods
providing significant increase in the forecast accuracy, and
efficient use of the available surveying and geological data
owing to quantification of qualitative genetic relationships
between indicators.

It is expedient to assume the indices coinciding in
distribution law with the forecasted one as the arguments of
the random degree polynomial as those ones having more
probable regularity with spacing of the predicted compo-
nent of a mineral.

The assessment of output surveying and geological data,
obtained on the basis of irregular testing network, is suppor-
ted by kriging method being the most accurate among all
known interpolation techniques. It is expedient to develop
mining and geological deposit model relying upon the use of
multidimensional random geochemical field.

On the whole, the developed predictive methods are effi-
cient while matching mining needs. They help assess mineral
reserves to improve significantly mining scheduling. Geo-
static methods make it possible to evaluate and process out-
put geological data. The developed self-organized predictive
algorithm is flexible; in such a way, it can be applied under
different mining and geological conditions to plan and evalu-
ate various mining techniques. Relying upon the results, the
self-organized and geostatic methods are very promising
tendency for future studies. The methods need further devel-
opment and perfection to improve their efficiency and use in
the context of both ore and non-metallic minerals.
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IIporno3na reoMerpu3ailis IKICHUX NOKA3HUKIB 32/1i30pyIHOTO POAOBHINA
A. Ilepemerunk, O. Kynikoscbka, H. IlIBarep, C. Uyxapes, C. ®enopenko, P. Mopapy, B. [1anaitotoB

Meta. Po3po0Oka MEeTOOUKHM NPOrHO3YBAaHHS IOKA3HHKIB 3ai30pYJHHUX POJOBHUIN HA OCHOBI BIOCKOHAJICHHS ICHYIOUHMX CIIOCOOIB Ta
CTBOPEHHSI HOBHX METOAMK I'€OMETpHU3allil, a TAKO)K BU3HAYCHHS HAWOUIBII MPUHHATHOTO CIOCOOY OLIHKH TEONIOTIYHUX AAHUX SIK OCHOBH
JUISL TEOMETpHU3aLlil Ta IIPOrHO3yBaHH.

Metoanka. CTBOpEHHS aNrOpUTMY IIPOTHO3YBAHHS, III0 CAMOOPTAHI3y€ETHCSI Ha OCHOBI CYKYIHOCTI BIJOMHX METOJIB i pO3pOOKH HOBUX
MaTeMaTHYHHUX METOJIB. Po3misiy pisHUX croco0iB OIIHKA JAHUX TeOJOTIYHOT PO3BIJIKH, OIiHKA iXHBO1 €)EKTUBHOCTI B YMOBaxX 3ali30py/-
HOTO POJIOBHIIA Ta BUOip HAHOLTHII eheKTHBHOTO croco0y. BUKOpHCTaHHS re0CTaTHCTUYHHUX METO/IB JIa€ MOXKIIUBICTH OIIIHKU Ta 00pOOKH
BUXIiJTHOT reoJIoTigHO1 iH(popMarllii. MeToiuKka JO3BOJISE OIIHIOBATH 3allaCi KOPUCHHUX KOTATHH TipHUYOTO MiIPUEMCTBRA.

PesyabTaTu. OTpuMaHO 3aI€KHOCTI BMICTy MarHeTUTOBOro 3amiza Ha kap’epi IliBal 3K Bix reomoro-rexHonorivaux ¢aktopiB. Buko-
HAHO TCOMETPHU3ALII0 POJOBHUILA Ta OTPUMAHO MPOTHO3HY TiPHMYO-TE€OMETPHYHY MOJENb IUISHKM POJOBHUINA. BHUSABICHO YHHHHKH, IO
BIUIMBAIOTh Ha XapaKTep PO3MOIiTy MoKa3HUKiB. [lo0yxzoBaHo rpadiku po3MilIeHHS SKICHHX MOKAa3HUKIB POJOBHUINA, HA OCHOBI YOTO BHKO-
HAHO MPOTHO3 IX PO3MILICHHS Y POAOBHILI.

HaykoBa HoBH3HA. P03p0o06ieHO MeTo ] MPOrHO3yBaHH TpHUYO-T€OJIOTIYHIX ITOKAa3HHKIB 3aJ1i30pYAHOTO POJOBHINA HA OCHOBI alropu-
TMY, IO CaMOOPTaHIi3yeThCs. BHABIEHO 3B’S30K MK SKICHAMH ITOKa3HHKaMH KOPHCHUX KOIAIMH Ta PI3HUMH T'€0JIOTO-TEeXHOJIOTTYHUMU
(axTopamu, 110 JT03BOJISIE OIMCATH MPOCTOPOBUI PO3MOLT IKICHUX IOKa3HUKIB POIOBHINA.

IIpakTHuna 3HaunMicTh. Po3po0ieHo MeToMKy TeoMeTpu3arii 3aIi30pyIHAX POJIOBHIL, IO JO3BOJISIE 3 BUCOKOIO TOYHICTIO IUTaHYBaTH
ripaIYi po0OTH, a TAKOXK IMIJIBHIIUTH iX eeKTHBHICT. Po3pobieHnii anroput™ nporHo3yBaHHs, 10 CAMOOPTaHi3y€eThCs, € THYYKUM Yy 3aCTOCY-
BaHHI 1 MOJKe OyTH BUKOPUCTAHUH B PI3HUX TIPHUYO-TEOJIOTIYHIX YMOBAX UL 3a0e3MeueHH UTaHyBaHHS Ta OLIHKH Pi3HUX TEXHOJIOTIH Be/IeH-
Hi ripHAYEX po0iT. CaMoOpraHi30BaHi METOIHU Ta TEOCTATUCTUYHI METOH OLIIHKHU € JOCHTh NEPCIIEKTUBHAM HAIPSIMOM JIOCIIDKEHHS.

Knrouogi cnosa: ancopumm wjo camoopeanizyemvcs, 2e0CMamucmuyHi Memoou, 3anact, 2eOMempu3ayis, AKiCHi NOKA3HUKU, NPOSHO3Y6AHHSL
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