Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Determining the regional tectonic stress field by remote sensing in the Bou Azzer inlier, Central Anti-Atlas, Morocco

Anas Driouch1, Latifa Ouadif1, Khalid Benjmel2 , Mohamed Bhilisse3, Said Ilmen4

1Mohammed V University, Rabat, Morocco

2Hassan II University, Casablanca, Morocco

3Aya Gold & Silver Company, Casablanca, Morocco

4Ibn Zohr University, Agadir, Morocco


Min. miner. depos. 2022, 16(2):49-54


https://doi.org/10.33271/mining16.02.049

Full text (PDF)


      ABSTRACT

      Purpose. This paper deals with the determination of the regional stress field direction of the Bou Azzer inlier using the remote sensing tool.

      Methods. CIn this study, we use an approach to digital mapping by remote sensing, including the steps of pre-processing and processing of Landsat-8 OLI images. Then, an automatic extraction of lineaments based on directional filtering has been performed. To determine the main directions of major mean fractures, these results have been supplemented and confirmed by an integrated model, including a synthesis of bibliographic works and field studies.

      Findings. The directional rosette analysis results show four systems of major directions namely, N0°, N45°, N90° and N135°. The regional stress field in the study area, according to tectonic history, is characterized by a horizontal compression tectonic regime, as indicated by several systems of strike-slip faults with a high tendency to deformation. Thus, the abundance of brittle and ductile microtectonic indicators confirms the direction of the main compressive stress N°30. The direction of the three-dimensional stress field: σ1: N°30, σ2: N°120, σ3: Vertical component.

      Originality. The present study allows to determine the regional stress field direction of the Bou Azzer inlier, in particular, in areas affected by complex tectonics of various scales, as well as in hard-to-reach areas.

      Practical implications. In mining practice, the study of stability using 2D and 3D geotechnical numerical modeling of underground mine workings is essential. The stress field direction is an important input parameter to develop more realistic decision support models, as well as to ensure the safety of people and materials at the Bou Azzer mine.

      Keywords: Bou Azzer, remote sensing, fractures, engineering geology, stress field, modeling


      REFERENCES

  1. Hobbs, W.H. (1904). Lineaments of the Atlantic Border region. Geological Society of America Bulletin, 15(1), 483-506. https://doi.org/10.1130/gsab-15-483
  2. Hashim, M., Ahmad, S., Johari, M.A.M., & Pour, A.B. (2013). Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Advances in Space Research, 51(5), 874-890. https://doi.org/10.1016/j.asr.2012.10.004
  3. Hobbs, W.H. (1912). Earth features and their meaning; an introduction to geology for the student and the general reader. New York, United States: The Macmillan, 590 p. https://doi.org/10.5962/bhl.title.18732
  4. Marghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. Research Journal of Applied Sciences, 5(2), 126-130. https://doi.org/10.3923/rjasci.2010.126.130
  5. Masoud, A., & Koike, K. (2006). Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences, 45(4-5), 467-477. https://doi.org/10.1016/j.jafrearsci.2006.04.005
  6. O’leary, D.W., Friedman, J.D., & Pohn, H.A. (1976). Lineament, linear, lineation: Some proposed new standards for old terms. Geological Society of America Bulletin, 87(10), 1463. https://doi.org/10.1130/0016-7606(1976)87<1463:lllspn>2.0.co;2
  7. Massironi, M., Bertoldi, L., Calafa, P., Visonà, D., Bistacchi, A., Giardino, C., & Schiavo, A. (2008). Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco). Geosphere, 4(4), 736. https://doi.org/10.1130/ges00161.1
  8. El Janati, M., Soulaimani, A., Admou, H., Youbi, N., Hafid, A., & Hefferan, K.P. (2013). Application of ASTER remote sensing data to geological mapping of basement domains in arid regions: a case study from the Central Anti-Atlas, Iguerda inlier, Morocco. Arabian Journal of Geosciences, 7(6), 2407-2422. https://doi.org/10.1007/s12517-013-0945-y
  9. Adiri, Z., El Harti, A., Maacha, A.J.L., & Bachaoui, E.M. (2016). Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas. Journal of Applied Remote Sensing, 10(1), 016005. https://doi.org/10.1117/1.jrs.10.016005
  10. Adiri, Z., El Harti, A., Jellouli, A., Lhissou, R., Maacha, L., Azmi, M., Zouhair, M., & Bachaoui, E.M. (2017). Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Advances in Space Research, 60(11), 2355-2367. https://doi.org/10.1016/j.asr.2017.09.006
  11. El Janati, M. (2019). Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco. Journal of African Earth Sciences, (151), 95-106. https://doi.org/10.1016/j.jafrearsci.2018.12.002
  12. Choubert, G. (1947). L’accident majeur de l’Anti-Atlas. Comptes Rendus de l’Academie des Sciences, (224), 1172-1173.
  13. Admou, H. (2011). Notice explicative, carte géol. Maroc (1/50000), feuille d’Aıt Ahmane. Notes et Mémoires du Service Géologique, (533), 1-7.
  14. Blein, O., Baudin, T., Chèvremont, P., Soulaimani, A., Admou, H., Gasquet, P., & Gombert, P. (2014). Geochronological constraints on the polycyclic magmatism in the Bou Azzer-El Graara inlier (Central Anti-Atlas Morocco). Journal of African Earth Sciences, (99), 287-306. https://doi.org/10.1016/j.jafrearsci.2014.04.021
  15. Chèvremont, P. (2013). ANZAR-Conseil, 2013. Notice explicative carte géological Maroc (1/50000), feuille Bou Azzer. Notes et Mémoires du Service Géologique, (535), 1-5.
  16. Souleimani, A. (2013). Notice explicative carte géologique Maroc (1/50000), feuille Al Glo’a. Notes et Mémoires du Service Géologique, (535), 13-15.
  17. Bodinier, J.L., Dupuy, C., & Dostal, J. (1984). Geochemistry of Precambrian ophiolites from Bou Azzer, Morocco. Contributions to Mineralogy and Petrology, 87(1), 43-50. https://doi.org/10.1007/bf00371401
  18. Naidoo, D.D., Bloomer, S.H., Saquaque, A., & Hefferan, K. (1991). Geochemistry and significance of metavolcanic rocks from the Bou Azzer-El Graara ophiolite (Morocco). Precambrian Research, 53(1-2), 79-97. https://doi.org/10.1016/0301-9268(91)90006-v
  19. El Hadi, H., & Tabit, H. (1989). Cumulats ultramafiques et mafiques du complexe ophiolitique de Bou Azzer El Graara (anti-atlas central, Maroc). Publication Occasionnelle – Centre International Pour La Formation Et Les Échanges Géologiques, (16), 1-12.
  20. Leblanc, M. (1975). Ophiolites precambriennes et gites arsenies de cobalt : Bou Azzer (Maroc). These Doctorat d’Etat, Faculte des Science Paris VI, Memoires Centre Geologique et Geophysique.
  21. Leblanc, M., & Lancelot, J.R. (1980). Interprétation géodynamique du domaine pan-africain (Précambrien terminal) de l’Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Canadian Journal of Earth Sciences, 17(1), 142-155. https://doi.org/10.1139/e80-012
  22. Saquaque, A. (1992). Un exemple de suture-arc: le Précambrien de l’Anti-Atlas centre oriental (Maroc). PhD Thesis.
  23. Saquaque, A., Admou, H., Karson, J., Hefferan, K., & Reuber, I. (1989). Precambrian accretionary tectonics in the Bou Azzer-El Graara region, Anti-Atlas, Morocco. Geology, 17(12), 1107‑1110. https://doi.org/10.1130/0091-7613(1989)017<1107:PATITB>2.3.CO;2
  24. Oberthür, T. (2009). Hercynian age of the cobalt-nickel-arsenide-(gold) ores, Bou Azzer, Anti-Atlas, Morocco: Re-Os, Sm-Nd, and U-Pb age determinations. Economic Geology, 104(7), 1065‑1079. https://doi.org/10.2113/econgeo.104.7.1065
  25. D’Lemos, R.S., Inglis, J.D., & Samson, S.D. (2006). A newly discovered orogenic event in Morocco: Neoproterozic ages for sup-posed Eburnean basement of the Bou Azzer inlier, Anti-Atlas Mountains. Precambrian Research, 147(1), 65-78. https://doi.org/10.1016/j.precamres.2006.02.003
  26. Leblanc, M. (1981). The late proterozoic ophiolites of Bou Azzer (Morocco): Evidence for Pan-African plate tectonics. Developments in Precambrian Geology, (4), 435-451. https://doi.org/10.1016/S0166-2635(08)70022-7
  27. Soulaimani, A., Le Corre, C., & Farazdaq, R. (1997). Déformation her-cyni-enne et relation socle/couverture dans le domaine du Bas-Draˆa (Anti-Atlas occidental, Maroc). Journal of African Earth Sciences, 24(3), 271-284. https://doi.org/10.1016/S0899-5362(97)00043-2
  28. Alaoui, H.E., Moujahid, E., Ibouh, H., Bachnou, A., Babram, M.A., & Harti, A.E. (2016). Mapping and analysis of geological fractures extracted by re-mote sensing on Landsat TM images, example of the Imilchil-Tounfite area (Central High Atlas, Morocco). Estudios Geologicos (Madrid), 72(2), 12. https://doi.org/10.3989/egeol.42328.394
  29. Javhar, A., Chen, X., Bao, A., Jamshed, A., Yunus, M., Jovid, A., & Latipa, T. (2019). Comparison of multi-resolution optical landsat-8, sentinel-2 and radar sentinel-1 data for automatic lineament extraction: A case study of Alichur Area, SE Pamir. Remote Sensing, 11(7), 778. https://doi.org/10.3390/rs11070778
  30. Gad, S., & Kusky, T. (2007). ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11(3), 326-335. https://doi.org/10.1016/j.gr.2006.02.010
  31. Pour, A.B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran. Advances in Space Research, 49(4), 753-769. https://doi.org/10.1016/j.asr.2011.11.028
  32. Si Mhamdi, H., Raji, M., Maimouni, S., & Oukassou, M. (2017). Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco). Arabian Journal of Geosciences, 10(5), 125. https://doi.org/10.1007/s12517-017-2912-5
  33. Si Mhamdi, H., Raji, M., & Oukassou, M. (2016). Utilisation de la télédé-tection dans la cartographie automatique des linéaments géologiques du gran-itoïde de Tichka (Haut Atlas Occidental). European Journal of Scientific Research, (142), 321‑333.
  34. Anbalagan, R., Kumar, R., Lakshmanan, K., Parida, S., & Neethu, S. (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2(1), 6. https://doi.org/10.1186/s40677-014-0009-y
  35. Mandal, S., & Maiti, R. (201). Role of lithological composition and lineaments in land sliding: A case study of Shivkhola watershed, Darjeeling Himalaya. International Journal of Geology, Earth and Environmental Sciences, (4), 126-132.
  36. Matori, A.N., Basith, A., & Harahap, I.S.H. (2011). Study of regional monsoonal effects on landslide hazard zonation in Cameron Highlands, Malaysia. Arabian Journal of Geosciences, 5(5), 1069-1084. https://doi.org/10.1007/s12517-011-0309-4
  37. Hinaje, S. (1995). Apport de l’analyse de la tectonique cassante tardi et post-panafricaine à la modélisation de la mise en place des minéralisations dans la boutonnière de Bou-azzer (anti-Atlas, Maroc).
  38. Лицензия Creative Commons