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Abstract

Purpose. This paper deals with the determination of the regional stress field direction of the Bou Azzer inlier using the re-
mote sensing tool.

Methods. In this study, we use an approach to digital mapping by remote sensing, including the steps of pre-processing and
processing of Landsat-8 OLI images. Then, an automatic extraction of lineaments based on directional filtering has been per-
formed. To determine the main directions of major mean fractures, these results have been supplemented and confirmed by an
integrated model, including a synthesis of bibliographic works and field studies.

Findings. The directional rosette analysis results show four systems of major directions namely, N0°, N45°, N90° and
N135°. The regional stress field in the study area, according to tectonic history, is characterized by a horizontal compression
tectonic regime, as indicated by several systems of strike-slip faults with a high tendency to deformation. Thus, the abundance
of brittle and ductile microtectonic indicators confirms the direction of the main compressive stress N°30. The direction of the
three-dimensional stress field: o1: N°30, 62: N°120, ¢3: Vertical component.

Originality. The present study allows to determine the regional stress field direction of the Bou Azzer inlier, in particular,
in areas affected by complex tectonics of various scales, as well as in hard-to-reach areas.

Practical implications. In mining practice, the study of stability using 2D and 3D geotechnical numerical modeling of un-
derground mine workings is essential. The stress field direction is an important input parameter to develop more realistic deci-
sion support models, as well as to ensure the safety of people and materials at the Bou Azzer mine.
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1. Introduction been applied to Landsat-8 Oli image, including pre-processing:

Remote sensing is a technique widely used to study large radiometric calibre_ltion, atmospheric correction, a_nd principal
geographical areas, as well as to perform geological and struc- ~ component analysis (PCA) to properly characterize the geo-
tural mapping. It is considered a tool for extracting lineaments  logical fractures. Conducting validation and interpretation
that correspond to geological fractures or faults. Therefore, the ~ based on bibliographic synthesis and field work, including
practicality of this study is particularly important in geological ~ Structural observations and in-situ measurements. Finally,
exploration, hydrogeology, geotechnical modeling, and mine de_termlne the_reglt_)nal _stress field direction based on the anal-
planning. The term “lineament” was first used in [1] to study  YSis of the major directional rosettes of the faults.
the rock topography and is described in [2]-[6]. Many geolo- ) )
gical surveys used remote sensing data for lineament extrac- 2. Geological setting
tion, incl_ud_ing Jbel Saghro in the eastern Anti.-AtIas [7],inthe 51 Lithological context
Iguerda inlier of the Central Anti-Atlas [8], in the Bas Draa
inlier of the Eastern Anti-Atlas [9], in the Sidi Flah-Bouskour
inlier of the Eastern Anti-Atlas [10], and in the Taghdout re-
gion of the Central Anti-Atlas [11].

The purpose of this paper is to provide a map of fracturing
in the Bou Azzer inlier in order to understand the distribution
of fractures and determine the stress field (o1, 62, 63) direc-
tion in the study area. Several remote sensing processes have

The Bou Azzer-El Graara inlier (Fig. 1) is located along
the major accident of the Anti-Atlas in its central part [12]. In
this inlier, the outcrop gives evidence of the oldest for-
mations, which have been subdivided into two major litho-
logical sets according to [13]-[16]. The first group corre-
sponds to the magmato-metamorphic ensemble, more an-
cient, of Neoproterozoic age, formed by complexes of tecton-
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ic scale stacks resulting from the Pan-African collision,
formed mainly by orthogneiss, more or less metamorphosed
mafic rocks and paragneiss, confined to the Lower Cryogeni-
an age (NP2i). These rocks are intersected by granitoids of
the Upper Cryogenian age (NP2s). On the one hand, the
second group consists of Neoproterozoic platform deposits
occurring on the northern margin of the West African Craton
(Tachdamt-Bleida Group), composed of siltstones, quartz-
ites, sandstones, and basalts confined to the Lower Cryoge-
nian age (NP1-2). On the other hand, the third group corre-
sponds to the Tichibanine-Ben Lgrad volcano-sedimentary
series, composed of thin siltstones intersected by granitoids
of Taghouni massif of the Lower Cryogenian age [17], [18].
The last group corresponds to the Bou Azzer ophiolitic com-
plex, composed of serpentinized mantle peridotites, cut by a
swarm of basic and ultrabasic veins, basic and ultrabasic
cumulates, gabbros and microgabbros, spilitized basalts and
diabases, as well as a volcano-sedimentary ensemble, con-
fined to the Upper Cryogenian age [17]-[23].
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Figure 1. The geological map of the Bou Azzer inlier [20], [24]
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The later non-metamorphic unit rests in a large uncon-
formity on the Pan-African bedrock, its formations are com-
posed at the base of sandstone levels, siltstones and rhyolites
of the Lower Ediacaran age (NP3i) of the Tiddiline Group.
All these lithostratigraphic units, from Cryogenian to Edia-
caran, are straightened and folded into fault corridors at the
late stage of the Pan-African tectonics. Subsequently, pyro-
clastic flows and volcano-detrital deposits of the Ouarzazate
Group of the Upper Ediacaran age, composed mainly of
ignimbrite pyroclastics from dacitic to rhyolite composition,
occur in an angular unconformity with the Tiddiline Group.

2.2. Structural context

The Bou Azzer inlier is affected by several synschist,
synmetamorphic (Eburnian and Pan-African) and late oro-
genic phases. The Pan-African orogeny is characterized by
three tectonic phases. The first synschist ductile phase is
responsible for orthogneissification, accompanied by shear
structures with a predominantly dextral component [25]. The
second phase B1 [20], [26] is characterized by a S1 schistose,
synschistose anisoclinal folds of the main NW-SE direction
and overlapping by descending chequered accidents [23]. On
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the other hand, the last late phase B2 [20] manifests itself in
the form of folds that fill the B1 folds. These B2 folds, ac-
companied by fractured schistosity, have sub-horizontal
direction axes from N100 to N140.

The Bou Azzer inlier then undergoes a second orogeny of
Hercynian nature, responsible for the current structuring of
the Anti-Atlas. This orogeny deforms the basement-cover
complex with a sub-equatorial shortening of moderate inten-
sity and decreasing from west to east [27].

3. Data and methodology

This study uses a remote sensing digital mapping approach
to extract lineaments. By applying directional Sobel's filter-
ing [28], [29], using four directions (NO°, N45°, N90° and
N135°), a satellite image was obtained from Landsat 8 OLI on
October 29, 2020 and freely downloaded from the European
Space Agency website (https://glovis.usgs.gov) (Fig. 2).
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Figure 2. Location of the study area on the Landsat-8 Oli satellite
image

Firstly, several steps of pre-processing and processing
have been applied to the collected data using image pro-
cessing software for lineament extraction, including radio-
metric calibration, atmospheric correction performed on the
model (FLAASH) [30], [31].

Then, procedures have been conducted to improve the
image quality of the data by applying Principal Component
Analysis (PCA) [7]-[10], [32], [33].

Afterward, the lineament extraction was performed by
applying different combinations of values for the LINE
Module in the most commonly used Geomatica soft-
ware [34]-[36]. Map verification has been obtained using a
fracture map extracted from the geological map of the study
area 1/50000 (Bou Azzer-El Graa), with their explanatory
notes [13], [15], [16]. Thus, the work is complemented by
field work, as well as a bibliographic synthesis. Finally, the
prevailing tectonic regime and the regional stress field direc-
tion (o1, 62, 63) have been determined. The main steps used
for pre-processing and numerical data processing, as well as
validation of the fracture map, are summarized in Figure 3.

4. Results and discussion

The results of the fracture density maps and the major di-
rectional rosettes presented in Figures 4, 5, 6 and 7, extracted
from the new fracture map using a remote sensing methodo-
logical approach, show four systems of main orientations of
the predominant major fractures in the study area: NO°,
N45°,N90° and N135°.
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Figure 3. Methodological steps used in this study
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Figure 4. Results of the fracture density map and the major N90°
directional rosette in the Bou Azzer inlier
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Figure 5. Results of mapping the fracture density and the major
N45° directional rosette in the Bou Azzer inlier
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Figure 6. Results of mapping the fracture density and the major
NO° directional rosette in the Bou Azzer inlier
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The lineaments of the N90° direction are presented by a
high density in the northwestern part and small areas in the
central part of the study area.
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Figure 7. Results of mapping the fracture density and the major
N135° directional rosette in the Bou Azzer inlier

400000 410000

The lineaments of the N45° direction are presented by a
high density in the northwestern and southwestern parts of
large areas.

The lineaments of the NO° direction are presented by a
high density in the southwestern part of the Bou Azzer inlier.

The lineaments of the N135° direction are presented by a
high density in the central part with distribution of small
areas in the eastern and western parts of the Bou Azzer inlier.

A combination of structural analysis of the major mean
directions in the Bou Azzer inlier and the bibliographic
works according to [20], [37] makes it possible to identify
several tectonic events of compressive constraints, the
chronological sequence of which is as follows (Fig. 8).

Figure 8. Stereographic representations of structures and deter-
mination of stress axes; (a) during N30 compression;
(b) during ENE-WSW compression; (c) open quartz
tension cracks during NE-SW compression

A tectonic episode with a compressive stress field is re-
sponsible for the reverse play of the N-S faults, a dextral
strike-slip play of the NW-SE and NE-SW faults, as well as
the sinistral strike-slip play of the ENE-WSW faults (Fig. 8a).
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A tectonic episode is characterized by ENE-WSW orien-
ted stress. This regime is responsible for the sinistral strike-
slip play and several directional families of fractures without
filling, but the most represented families are: E-W, N-S and
NW-SE (Fig. 8h).

A tectonic episode, characterized by NNW-SSE oriented
stress, is responsible for the sinistral strike-slip play of NE-
SW faults and a dextral strike-slip play of WNW-ESE, as
well as from NW-SE to NNW-SSE faults.

A tectonic episode is characterized by tension splits formed
during a NE-SW trending compression episode (Fig. 8c). Most
intra-serpentinite quartz veins show a sinistral play. The Pan-
African deformation is highly heterogeneous, characterized by
the presence of C/S shear planes organized into two families:
N70-N100 sinistral and N140-N150 dextral.

The characterization of brittle and ductile structural ele-
ments to scale begins with in-situ surveys of fractures in the
two sectors of Ait Ahmane and Ambed, located in the central
part of the Bou Azzer inlier about forty kilometers southeast
of the Bou Azzer mining center. Schistosity is one of the
most striking structural elements of the relief, which gives
the best idea of the tectonic stress direction, as it is the most
represented plane in the rock. Two types of schistosity have
been identified in the study area: S1 schistosity with orienta-
tion varying from N110° to N130° (Fig. 9a), and medium to
strong dip between 60 and 85° southward.
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Figure 9. Stereograms: (a) stereogram of the S1 schistose planes;

(b) stereogram of fractures filled with Ait Ahmane
serpentinite

This S1 plane is mainly clogged with recrystallizations:
carbonates, asbestos. The S1 schistosity is related to the Pan-
African major phase [20]. The S2 schistosity varies from
N130 to N160 with a dip varying from 55 to 75° to the
southeast. This schistosity generally affects serpentinite and
gabbros, as well as all the Cryogenian terrains (lower PII) of
the Bou Azzer inlier (Fig. 10). The predominant fracture
directions in the Ait Ahmane sector, as a rule, are two direc-
tions NW-SE and NNW-SSE with a dip varying from 60 to
85°, filled with quartz and carbonates. Thus, several families
of directional fractures without filling are identified in the
sector, but E-W, N-S and NW-SE families are most repre-
sented (Fig. 9b).

In the Ambed sector, brittle structures in the form of frac-
tures with either quartz or quartz-carbonate filling belong to
two families of NNW-SSE and N-S directions. Thus, NE-
SW structures have a dip varying from 40 to 80°. Figure 11
shows fracturing in two facies: serpentinite and gabbro. Also
in the Ambed area, in contacts of serpentinites with quartizite
diorites and gabbros, veins filled quartz have been identified,
ranging in size from a centimeter to a decimeter (Fig. 12).
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Figure 10. Schistosity affects serpentinite and gabbros in the
Azzer inlier
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Figure 12. Quartz veins marking the contact between serpentinite
and quartz diorite

These contacts tend to be faults that probably played
out during the late brittle phases. Moreover, these quartz
or quartz-carbonate veins and veinlets show sinistral
displacements.

5. Conclusions

The study of fractures makes it possible to reconstruct the
regional tectonic history both from the fracture kinematics
and from the tectonic stress orientation. The regional stress
field direction, determined in this work, can significantly
improve the 2D, 3D geotechnical numerical models, as well
as interpret deformations and displacements in the under-
ground mining operations of the Bou Azzer mine.

These underground mining operations are subject to a
heterogeneous tectonic stress field with a compressive
tectonic regime. The direction of the principal stress ol
is N°30.
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BusnaueHHsI perioHaILHOrO MO/ TEKTOHIYHUX HANIPYKEHb 32C000M JUCTAHU{IHOT0 30HIyBAHHS
y Buctymi By-A3ep, neHTpajibHa yacTHHA MacuBy AHTiaTjac, Mapokko

A. [piyy, JI. Vanid, X. Benmxmens, M. bxinicce, C. lmbmen

Merta. Bu3HaueHHS HalpsMKy perioHaTEHOTO OIS HaNpy)KeHb BUCTYIy by-Asep 3a I0IoMororo iHCTpyMEHTIB AUCTAHI[IHHOTO 30H Ty BaHHSL.

Metoauka. YV 11bOMy JOCHIXKEHHI BUKOPHCTAHO MiAXig 10 mudpoBoro kaprorpadyBaHHs 3a JOMOMOIO0 JAUCTAHIIMHOTO 30HIyBaHH,
BKJIFOUAIOUH €TaIlH IMONepeIHb01 Ta 3araibHOi 00poOku 300paxenHs 3 cynmyTHHKY Landsat-8 OLI. IToTiM 3xificHeHO aBTOMaTU4HE BHIIYYEH-
HS JIIHEaMEeHTIB Ha OCHOBI clpsAMoBaHOi ¢inpTparii. [ BU3HaYeHHS OCHOBHHMX HANPSAMKIB BEIHKHX TEKTOHIYHHUX TPILIMH Li pe3yJIbTaTH
Oynu IOTIOBHEHI Ta MiATBEPKEH] IHTErPOBAHOIO MOJIEILTIO, SIKa BKIIFOUAE CHHTE3 010miorpadii Ta HONIBOBUX JOCIHIIKEHb.

PesyabTaTn. PesynpraTi aHanizy cnpsMOBaHOI pO3H HOKa3yIOTh YOTHPH CHCTEMH OCHOBHHX HampsMmKiB, a came NO°, N45°, N90° ta
N135°. PerionanbHe moe Hapy>KeHb Ha JOCIIDKYBaHIH TepUTOpii, 3a JaHUMH iCTOPil TEKTOHIKH, XapaKTepH3yEThCSI TEKTOHITHUM PEXU-
MOM T'OPU30HTAIFHOTO CTHCHEHHS, IPO IO BKa3yIOTh JEKiJbKa CHCTEM 3CYBHHX PO3JIOMIB 3 BHCOKOIO TEHJEHIIEI0 10 aedopmamnii. Takum
YHHOM, BEJIMKAa KUTBKICTh KPUXKHX 1 INTACTHYHUX MIKPOTEKTOHIYHMX ITOKA3HUKIB IIATBEPIXKY€E HAIPSIMOK OCHOBHOT'O CTHCKAIOYOTO HAIpPY-
skeHHs N°30. HampsaMok TpuBUMipHOTo 1ojis HanpykeHb: 61: N°30, 62: N°120, 63: BepTukaibHa CKJIaI0Ba.

HaykoBa HoBu3Ha. [IpoBeneHe DOCTIKEHHS Ja€ 3MOTY BU3HAYUTH HAIIPSMOK PETiOHATBHOTO MOJI HANpyKeHb BUCTYIy by-Asep, 30k-
pemMa, Ha TUTAHKAX, YpaXCHUX TEKTOHIKOIO Pi3HOro MaciuTaly CKJIAJHOCTI, 8 TAKOXK Y BAKKOJOCTYIHHUX TiITHKAX .

IIpakTHYHa 3HAYUMICTb. Y TipHUYIH MPAKTHUILI BaXXIIMBE 3HAYEHHS Ma€ JIOCTIHKEHHS CTiikocTi 3a gormomororo 2D ta 3D reotexHiuHO-
T'O YMCEIFHOTO MOJICIIOBAHHS MiI3eMHUX TipHUYHX BUPOOOK. HampsMOK 1mosist Harpys>KeHb € BaXIIMBAM BXiTHUM ITapaMeTpoOM ISl PO3POOKH
GBI pealicTHYHNX MOJEINIeH MATPUMKH NPUHHSTTS PillleHb, a TAKOX I 3a0e3neueHHs Oe3Meky Troael 1 MatepiaiiB Ha maxTi by-Aszep.

Kniouosi cnosa: By-Asep, oucmanyiiine 30H0Y8AHHS, MPIWUHA, THHCEHEPHA 2€0J102I5. NOIE HANPYIHCEHb, MOOENIOBAHHS
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