Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Prediction of tunnel boring machine penetration rate using ant colony optimization, bee colony optimization and the particle swarm optimization, case study: Sabzkooh water conveyance tunnel

Alireza Afradi1, Arash Ebrahimabadi1, Tahereh Hallajian1

1Department of Mining and Geology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, 4765161964, Iran


Min. miner. depos. 2020, 14(2):75-84


https://doi.org/10.33271/mining14.02.075

Full text (PDF)


      ABSTRACT

      Purpose. The purpose of this study is to use a novel approach to estimate the tunnel boring machine (TBM) penetration rate in diverse ground conditions.

      Methods. The methods used in this study include ant colony optimization (ACO), bee colony optimization (BCO) and the particle swarm optimization (PSO). Moreover, a comprehensive database was created based on machine performance using penetration rate (m/h) as an output parameter – as well as intact rock and rock mass parameters including uniaxial compressive strength (UCS) (MPa), Brazilian tensile strength (BTS) (MPa), rock quality designation (RQD) (%), cohesion (MPa), elasticity modulus (GPa), Poisson’s ratio, density(g/cm3), joint angle (deg.) and joint spacing (m) as input parameters.

      Findings. Results showed that the analyses yielded several realistic and reliable models for predicting penetration rate of TBMs. ACO model has R2 = 0.8830 and RMSE = 0.6955, BCO model has R2 = 0.9367 and RMSE = 0.5113 and PSO model has R2 = 0.9717 and RMSE = 0.3418.

      Originality.Prediction of TBM penetration rate using these methods has been carried out in the Sabzkooh water conveyance tunnel for the first time.

      Practical implications.According to the results, all three approaches are very effective but PSO yields more precise and realistic findings than other methods.

      Keywords: tunnel boring machine, penetration rate, Sabzkooh water conveyance tunnel, ant colony optimization, bee colony optimization, particle swarm optimization


      REFERENCES

  1. Adoko, A.C., Gokceoglu, C., & Yagiz, S. (2017). Bayesian prediction of TBM penetration rate in rock mass. Engineering Geology, (226), 245-256. https://doi.org/10.1016/j.enggeo.2017.06.014
  2. Afrasiabi, N., Rafiee, R., & Noroozi, M. (2019). Investigating the effect of discontinuity geometrical parameters on the TBM performance in hard rock. Tunnelling and Underground Space Technology, (84), 326-333. https://doi.org/10.1016/j.tust.2018.11.039
  3. Yin, L.J., Gong, Q.M., & Zhao, J. (2014). Study on rock mass boreability by TBM penetration test under different in situ stress conditions. Tunnelling and Underground Space Technology, (43), 413-425. https://doi.org/10.1016/j.tust.2014.06.002
  4. Armaghani, D.J., Koopialipoor, M., Marto, A., & Yagiz, S. (2019). Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering, 11(4), 779-789. https://doi.org/10.1016/j.jrmge.2019.01.002
  5. Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., & Yagiz, S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology, (63), 29-43. https://doi.org/10.1016/j.tust.2016.12.009
  6. Armetti, G., Migliazza, M.R., Ferrari, F., Berti, A., & Padovese, P. (2018). Geological and mechanical rock mass conditions for TBM performance prediction. The case of “La Maddalena” exploratory tunnel, Chiomonte (Italy). Tunnelling and Underground Space Technology, (77), 115-126. https://doi.org/10.1016/j.tust.2018.02.012
  7. Bieniawski von Preinl, Z.T., Celada Tamames, B., Galera Fernández, J.M., & Álvarez Hernández, M. (2006). Rock mass excavability indicator: New way to selecting the optimum tunnel construction method. Tunnelling and Underground Space Technology, 21(3-4), 237. https://doi.org/10.1016/j.tust.2005.12.016
  8. Cassinelli, F., Cina, S., & Innaurato, N. (1983). Power consumption and metal wear in tunnel-boring machines: analysis of tunnel-boring operation in hard rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(1), A25. https://doi.org/10.1016/0148-9062(83)91823-5
  9. Copur, H., Aydin, H., Bilgin, N., Balci, C., Tumac, D., & Dayanc, C. (2014). Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model. Tunnelling and Underground Space Technology, (42), 1-14. https://doi.org/10.1016/j.tust.2014.01.006
  10. Delisio, A., & Zhao, J. (2014). A new model for TBM performance prediction in blocky rock conditions. Tunnelling and Underground Space Technology, (43), 440-452. https://doi.org/10.1016/j.tust.2014.06.004
  11. Delisio, A., Zhao, J., & Einstein, H.H. (2013). Analysis and prediction of TBM performance in blocky rock conditions at the Lötschberg Base Tunnel. Tunnelling and Underground Space Technology, (33), 131-142. https://doi.org/10.1016/j.tust.2012.06.015
  12. Dudt, J.-P., & Delisio, A. (2016). The “penalty factors” method for the prediction of TBM performances in changing grounds. Tunnelling and Underground Space Technology, (57), 195-200. https://doi.org/10.1016/j.tust.2016.01.006
  13. Zhao, Ye, Wang, T., Qin, W., & Zhang, X. (2019). Improved rao-blackwellised particle filter based on randomly weighted PSO. Cognitive Internet of Things: Frameworks, Tools and Applications, 19-29. https://doi.org/10.1007/978-3-030-04946-1_3
  14. Zare, S., Bruland, A., & Rostami, J. (2016). Evaluating D & B and TBM tunnelling using NTNU prediction models. Tunnelling and Underground Space Technology, (59), 55-64. https://doi.org/10.1016/j.tust.2016.06.012
  15. Zhang, J., Feng, J., Chen, G., & Yang, X. (2019). Artificial bee colony algorithm combined with uniform design. Advances in Intelligent Information Hiding and Multimedia Signal Processing, 47-56. https://doi.org/10.1007/978-981-13-9710-3_5
  16. Hassanpour, J., Rostami, J., Khamehchiyan, M., & Bruland, A. (2009). Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel. Geomechanics and Geoengineering, 4(4), 287-297. https://doi.org/10.1080/17486020903174303
  17. Hassanpour, J., Rostami, J., & Zhao, J. (2011). A new hard rock TBM performance prediction model for project planning. Tunnelling and Underground Space Technology, 26(5), 595-603. https://doi.org/10.1016/j.tust.2011.04.004
  18. Ge, Y., Wang, J., & Li, K. (2013). Prediction of hard rock TBM penetration rate using least square support vector machine. IFAC Proceedings Volumes, 46(13), 347-352. https://doi.org/10.3182/20130708-3-CN-2036.00105
  19. Hedayatzadeh, M., & Khademi Hamidi, J. (2014). Use of rock mass fabric index in fuzzy environment for TBM performance prediction. Engineering Geology for Society and Territory, (6), 1019-1022. https://doi.org/10.1007/978-3-319-09060-3_185
  20. Fatemi, S. A., Ahmadi, M., & Rostami, J. (2016). Evaluation of TBM performance prediction models and sensitivity analysis of input parameters. Bulletin of Engineering Geology and the Environment, 77(2), 501-513. https://doi.org/10.1007/s10064-016-0967-2
  21. Fattahi, H., & Moradi, A. (2016). Risk assessment and estimation of TBM penetration rate using RES-based model. Geotechnical and Geological Engineering, 35(1), 365-376. https://doi.org/10.1007/s10706-016-0111-x
  22. Hassanpour, J., Ghaedi Vanani, A.A., Rostami, J., & Cheshomi, A. (2016). Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros water conveyance tunnel (ZWCT2). Tunnelling and Underground Space Technology, (52), 147-156.https://doi.org/10.1016/j.tust.2015.12.006
  23. Heydari, S., Khademi Hamidi, J., Monjezi, M., & Eftekhari, A. (2019). An investigation of the relationship between muck geometry, TBM performance, and operational parameters: A case study in Golab II water transfer tunnel. Tunnelling and Underground Space Technology, (88), 73-86. https://doi.org/10.1016/j.tust.2018.11.043
  24. Khademi Hamidi, J., Shahriar, K., Rezai, B., & Rostami, J. (2010). Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnelling and Underground Space Technology, 25(4), 333-345. https://doi.org/10.1016/j.tust.2010.01.008
  25. Macias, F.J., Jakobsen, P.D., Seo, Y., & Bruland, A. (2014). Influence of rock mass fracturing on the net penetration rates of hard rock TBMs. Tunnelling and Underground Space Technology, (44), 108-120. https://doi.org/10.1016/j.tust.2014.07.009
  26. Mahdevari, S., Shirzad Haghighat, H., & Torabi, S. R. (2013). A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation. Tunnelling and Underground Space Technology, (38), 59-68. https://doi.org/10.1016/j.tust.2013.05.002
  27. Ma, H., Gong, Q., Wang, J., Yin, L., & Zhao, X. (2016). Study on the influence of confining stress on TBM performance in granite rock by linear cutting test. Tunnelling and Underground Space Technology, (57), 145-150. https://doi.org/10.1016/j.tust.2016.02.020
  28. Liu, Q., Liu, J., Pan, Y., Kong, X., & Hong, K. (2017). A case study of TBM performance prediction using a Chinese rock mass classification system – Hydropower Classification (HC) method. Tunnelling and Underground Space Technology, (65), 140–154. https://doi.org/10.1016/j.tust.2017.03.002
  29. Lee, H.-L., Sung, W.-S., & Song, K.-I. (2018). Comparison between various multiple linear regression model for prediction of TBM performance. Sustainable Civil Infrastructures, 225-233. https://doi.org/10.1007/978-3-319-95753-1_18
  30. Salimi, A., Rostami, J., & Moormann, C. (2019). Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms. Tunnelling and Underground Space Technology, (92), 103046. https://doi.org/10.1016/j.tust.2019.103046
  31. Wilfing, L., Käsling, H., & Thuro, K. (2014). Towards a uniform definition of rock toughness for penetration prediction in TBM tunneling. Engineering Geology for Society and Territory, (6), 469-473. https://doi.org/10.1007/978-3-319-09060-3_82
  32. Namli, M., & Bilgin, N. (2017). A model to predict daily advance rates of EPB-TBMs in a complex geology in Istanbul. Tunnelling and Underground Space Technology, (62), 43-52. https://doi.org/10.1016/j.tust.2016.11.008
  33. Tóth, Á., Gong, Q., & Zhao, J. (2013). Case studies of TBM tunneling performance in rock–soil interface mixed ground. Tunnelling and Underground Space Technology, (38), 140-150. https://doi.org/10.1016/j.tust.2013.06.001
  34. Salimi, A., Faradonbeh, R. S., Monjezi, M., & Moormann, C. (2016). TBM performance estimation using a classification and regression tree (CART) technique. Bulletin of Engineering Geology and the Environment, 77(1), 429-440. https://doi.org/10.1007/s10064-016-0969-0
  35. Rostami, J. (2016). Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground. Tunnelling and Underground Space Technology, (57), 173-182. https://doi.org/10.1016/j.tust.2016.01.009
  36. Yagiz, S., Gokceoglu, C., Sezer, E., & Iplikci, S. (2009). Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Engineering Applications of Artificial Intelligence, 22(4-5), 808-814. https://doi.org/10.1016/j.engappai.2009.03.007
  37. Yagiz, S. (2008). Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology, 23(3), 326-339. https://doi.org/10.1016/j.tust.2007.04.011
  38. Yagiz, S., Ghasemi, E., & Adoko, A.C. (2018). Prediction of rock brittleness using genetic algorithm and particle swarm optimization techniques. Geotechnical and Geological Engineering, 36(6), 3767-3777. https://doi.org/10.1007/s10706-018-0570-3
  39. Rasouli Maleki, M. (2018). Rock Joint Rate (RJR); a new method for performance prediction of tunnel boring machines (TBMs) in hard rocks. Tunnelling and Underground Space Technology, (73), 261-286. https://doi.org/10.1016/j.tust.2017.12.022
  40. Vergara, I.M., & Saroglou, C. (2017). Prediction of TBM performance in mixed-face ground conditions. Tunnelling and Underground Space Technology, (69), 116-124. https://doi.org/10.1016/j.tust.2017.06.015
  41. Yagiz, S., & Karahan, H. (2011). Prediction of hard rock TBM penetration rate using particle swarm optimization. International Journal of Rock Mechanics and Mining Sciences, 48(3), 427-433. https://doi.org/10.1016/j.ijrmms.2011.02.013
  42. Yagiz, S., & Karahan, H. (2015). Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass. International Journal of Rock Mechanics and Mining Sciences, (80), 308-315. https://doi.org/10.1016/j.ijrmms.2015.09.019
  43. Roeva, O., & Fidanova, S. (2019). Different inter criteria analysis of variants of ACO algorithm for wireless sensor network positioning. Recent Advances in Computational Optimization, 83-103. https://doi.org/10.1007/978-3-030-22723-4_6
  44. Fang, L., Yang, Q., & Yang, T. (2019). Research on path planning algorithm of two-machine cooperative wall climbing and sanding robot based on ant colony algorithm. Lecture Notes in Electrical Engineering, 501-511. https://doi.org/10.1007/978-981-32-9437-0_52
  45. Fidanova, S., Roeva, O., Luque, G., & Paprzycki, M. (2019). Inter criteria analysis of different hybrid ant colony optimization algorithms for workforce planning. Recent Advances in Computational Optimization, 61-81. https://doi.org/10.1007/978-3-030-22723-4_5
  46. Mirjalili, S., Song Dong, J., & Lewis, A. (2019). Ant colony optimizer: theory, literature review, and application in AUV path planning. Nature-Inspired Optimizers, 7-21. https://doi.org/10.1007/978-3-030-12127-3_2
  47. Sushma, M.B., Roy, S., Prasad, M.B.R., & Maji, A. (2019). Optimum point of intersection selection in horizontal highway alignment design: a comparative study using path planner method and ant algorithm. Transportation Research, 185-199. https://doi.org/10.1007/978-981-32-9042-6_15
  48. Preetha, P.S., & Kusagur, A. (2019). Implementation of ant-lion optimization algorithm in energy management problem and comparison. Learning and Analytics in Intelligent Systems, 462-469. https://doi.org/10.1007/978-3-030-24318-0_55
  49. Zhang, X.X. (2019). Research on logistics distribution routing optimization based on ant colony algorithm. Proceedings of the Sixth International Forum on Decision Sciences, 65-78. https://doi.org/10.1007/978-981-13-8229-1_7
  50. Niranjani, G., & Umamaheswari, K. (2019). Modified DFA minimization with artificial bee colony optimization in vehicular routing problem with time windows. Data Management, Analytics and Innovation, 643-662. https://doi.org/10.1007/978-981-32-9949-8_45
  51. Demircan, C., Keçebaş, A., & Bayrakçı, H.C. (2019). Artificial bee colony-based GMPPT for non-homogeneous operating conditions in a bifacial CPVT system. Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, 331-353. https://doi.org/10.1007/978-3-030-05578-3_12
  52. Uysal, F., Kilinc, E., Kurt, H., Celik, E., Dugenci, M., & Sagiroglu, S. (2017). Estimating see beck coefficient of a p-type high temperature thermoelectric material using bee algorithm multi-layer perception. Journal of Electronic Materials, 46(8), 4931-4938. https://doi.org/10.1007/s11664-017-5497-6
  53. Pawar, P.J., & Khalkar, M.Y. (2019). Multi-objective optimization of wire-electric discharge machining process using multi-objective artificial bee colony algorithm. Advanced Engineering Optimization Through Intelligent Techniques, 39-46. https://doi.org/10.1007/978-981-13-8196-6_4
  54. Pattanayak, S., & Choudhury, B.B. (2019). An effective trajectory planning for a material handling robot using PSO algorithm. Advances in Intelligent Systems and Computing, 73-81. https://doi.org/10.1007/978-981-13-8676-3_7
  55. Sahu, S., & Choudhury, B.B. (2019). PSO based path planning of a six-axis industrial robot. Advances in Intelligent Systems and Computing, 213-220. https://doi.org/10.1007/978-981-13-8676-3_19
  56. Saremi, S., & Mirjalili, S. (2019). Evaluating PSO and MOPSO equipped with evolutionary population dynamics. Algorithms for Intelligent Systems, 61-88. https://doi.org/10.1007/978-981-13-9757-8_4
  57. Subhra Pal, S., Hira, R., & Pal, S. (2019). Comparison of four nature inspired clustering algorithms: PSO, GSA, BH and IWD. Computational Intelligence in Pattern Recognition, 669-674. https://doi.org/10.1007/978-981-13-9042-5_57
  58. Yadav, A.S., Swami, A., Ahlawat, N., Bhatt, D., & Kher, G. (2019). Electronic components’ supply chain management of electronic industrial development for warehouse and its impact on the environment using particle swarm optimization algorithm. Asset Analytics, 427-443. https://doi.org/10.1007/978-981-13-9698-4_23
  59. Yao, S., Jiang, X., & Wei, X. (2019). A model for job-shop scheduling based on NN-PSO technique. Advances in Intelligent Systems and Computing, 344-350. https://doi.org/10.1007/978-3-030-14680-1_38
  60. Zhao, Yu, Gong, Q., Tian, Z., Zhou, S., & Jiang, H. (2019). Torque fluctuation analysis and penetration prediction of EPB TBM in rock–soil interface mixed ground. Tunnelling and Underground Space Technology, (91), 103002. https://doi.org/10.1016/j.tust.2019.103002
  61. Лицензия Creative Commons