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Abstract

Purpose. The purpose of this study is to use a novel approach to estimate the tunnel boring machine (TBM) penetration rate
in diverse ground conditions.

Methods. The methods used in this study include ant colony optimization (ACO), bee colony optimization (BCO) and the
particle swarm optimization (PSO). Moreover, a comprehensive database was created based on machine performance using
penetration rate (m/h) as an output parameter — as well as intact rock and rock mass parameters including uniaxial compres-
sive strength (UCS) (MPa), Brazilian tensile strength (BTS) (MPa), rock quality designation (RQD) (%), cohesion (MPa),
elasticity modulus (GPa), Poisson’s ratio, density(g/cm?), joint angle (deg.) and joint spacing (m) as input parameters.

Findings. Results showed that the analyses yielded several realistic and reliable models for predicting penetration rate of
TBMs. ACO model has R? = 0.8830 and RMSE = 0.6955, BCO model has R? = 0.9367 and RMSE = 0.5113 and PSO mo-
del has R? = 0.9717 and RMSE = 0.3418.

Originality. Prediction of TBM penetration rate using these methods has been carried out in the Sabzkooh water convey-
ance tunnel for the first time.

Practical implications. According to the results, all three approaches are very effective but PSO yields more precise and
realistic findings than other methods.

Keywords: tunnel boring machine, penetration rate, Sabzkooh water conveyance tunnel, ant colony optimization, bee colony

optimization, particle swarm optimization

1. Introduction

Today, in many major cities around the world, urban
transport tunnels play an important role in human life, re-
quiring the use of advanced modern tools such as tunneling
machines (TBMs) for excavating and carrying out these
projects [1], [2]. The speed and quality of excavating have
made these machines competitive with traditional meth-
ods [3], [4]. Predicting the performance of TBM is one of
the crucial issues in estimating the cost of construction and
execution of tunnel projects. TBM performance is highly
depen-dent on the rate of penetration of the device and pene-
tration rate is one of the important factors the excavating
rate or advance rate of TBM [5], [6].

The penetration rate is a function of rock and machine
properties [7]. The penetration rate is defined as the ratio of
excavating distance to excavating time during a continuous
excavating phase [8], [9]. TBM penetration rate estimates
can be used to reduce the risks associated with the costs of
current investment in excavating operations [10], [11]. Esti-
mating the penetration rate has a great impact on controlling
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the project time and choosing the excavating meth-
od [12], [13]. However, TBMs are susceptible to geological
conditions such as fractures, cracks and swelling and rock
explosions [14], [15]. The relationship between penetration
rate and rock parameters has been investigated by some re-
searchers [16]-[23] and some have suggested using a rock
mass classification to estimate the performance of
TBMs [24]-[30]. Penetration rate prediction models used in
engineering can be divided into three categories:

1) experimental models;

2) theoretical models;

3) numerical models.

Experimental models are often obtained by analyzing data
from tunnel projects [31], [32], while theoretical models are
obtained by performing laboratory tests and simulating reality
in laboratories [33]-[35]. Recently, highly regarded numerical
models are a new and less expensive method that reflects
reality using project records [36]-[42]. In this study, ant colo-
ny optimization (ACO), bee colony optimization (BCO) and
the particle swarm optimization (PSO) were used to predict
TBM penetration rate in Sabzkooh water conveyance tunnel.
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2. Materials and methods

2.1. Sabzkooh water conveyance tunnel

Sabzkooh water conveyance tunnel with an approximate
length of 10700 meters and an excavating diameter of
4.5 meters has been designed to transfer water from Sab-
zkooh Basin to Choghakhor Dam in Chaharmahal and
Bakhtiari Province, about 80 km south of Shahrekord. Loca-
tion of the Sabzkooh water conveyance tunnel, ¢s can be
seen in Figurel.
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Figure 1. Location of the Sabzkooh water conveyance tunnel

2.2. Ant colony optimization (ACO)

This method is inspired by the ability of ants to find the
shortest path between a nest and a food source. As the ants
move around, they leave a chemical called pheromone. When
a population of ants traverses several paths between a nest
and a food source, it is observed after a certain time that the
number of pheromones left in the different paths varies. This
is due to the fact that ants traveling the shorter route have
more traffic due to the shorter route in a given period of time.
Because the ants inherently choose the route that It has more
pheromones, so it will be a while that the ants have chosen
the shorter route. Using the ant’s method, a search method is
implemented that uses every step of the information from the
previous steps to reach the goal. The ant colony algorithm is
inspired by studies and observations on ant colonies.

These studies have shown that ants are social insects that
live in colonies, and their behavior is more for the survival of
the colonies than for the survival of a component. One of the
most important ants of ants is their behavior in finding food,
and in particular how to find the shortest route between food
sources and nests. This kind of ant’s behavior has a kind of
mass intelligence that has been the focus of scientists recent-
ly in the real world. They then return to the nest and leave a
trail of Pheromone. Such rows turn white after rain and are
visible. Other ants, when they find this path, sometimes give
up roaming and follow it. Then, if they get food, they return
home and leave another trail beside the previous one; in other
words, they reinforce the previous route. The pheromone
evaporates over time, which is useful in three ways, making
it less attractive to subsequent ants. As an ant travels and
reinforces shorter paths in the long run, each path between
the house and the food that is shorter (better) is further
strengthened and the farther away the less, and if the phero-
mone does not evaporate, the paths that have been repeated
several times. They were so overwhelming that they limited
the random search for food. Another advantage is that it stays
off when the food ends at an attractive route.
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The problem is finding the shortest path and solving these
artificial ants. The ant colony algorithm, or in fact “ant colo-
ny optimization” as the name implies, is based on the natural
behavior of the ant colonies and the working ant. The process
of finding food in the ant colony is very optimistic. When
ants begin their exploration of food sources, they will natu-
rally find a “logical” and “optimal” route from their nest to
food sources. In other words, the ant population is always
able to find an optimal route to supply the food they need.
Simulating such optimal behavior forms the basis of ant
colony optimization. In this article, the ant colony algorithm
is fully described. It should be noted that the exact name of
this algorithm is ant colony optimization, which is often
referred to as the ant algorithm or ant colony algorithm [43].
Imagine two ants moving from a nest to a food source
through two completely different paths. As they move to-
ward the food source, the ants release a trace of pheromone
into the environment that disintegrates naturally over time.

In this case, on the way back to the nest, the ant will start
releasing pheromones back into the environment, thereby
strengthening the pheromone trace left in the shortest path.
Other ants instinctively follow the strongest pheromone
pathway in the environment and reinforce the pheromone
pathway in this pathway. After a certain period of time, not
only does the pheromone trace in the shortest path not col-
lapse, but it is further enhanced by the accumulation of other
pheromone traces. The pathway where the strongest phero-
mone trace is left becomes the default path for ants to move
from a colon to a food source and vice versa. The algorithms
derived from the ant colony algorithm are a subset of swarm
intelligence methods. These are the types of research and
study areas that study algorithms inspired by the concept of
“swarm behaviors”. Swarm intelligence algorithms consist of
a set of simple individual entities that interact with one an-
other through “self-organizing”. Self-organization means the
absence of a centralized control system to control and coor-
dinate the members of a crowded intelligence system.

One of the algorithms used in this study is an ant colony
optimization algorithm for continuous domains [44]. For the
continuous optimization problem, a model can be formulated
as P = (S Q-f), where S defines all finite sets of discrete deci-
sion variables, Q defines constraints between variables and a
target function (f: S — RO+) which must be minimized or
maximized [43], [45]. It should be noted that in ant colony
optimization, the basis of work is the gradual construction of
solutions based on the probability of solution components and
the probability values are calculated based on the pheromone
values of each component [46], [47]. In ant colony optimiza-
tion implemented in hybrid optimization problems, a set of
parts related to the solution available is defined by the prob-
lem formula [48]. At each step of the construction, the ants
make a possible selection of ci from N(sP) by Equation (1):

sp) U(Cij).ﬂ
>ceN (Sp)ﬂja 'U(Cij)ﬂ
where:

ij — the amount of pheromone linked to cij;

7(0) — a weight function that assigns an innovative value
to ciie N(sP) at each step of making a value.

The values determined by the weighting function are of-
ten referred to as apocalyptic information [49]. In addition, «

—cP
_Cij'

p(cij VG € N(sp), oy
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and S are positive parameters which values determine the
relationship between pheromone information and heuristic
information. For sampling and solution, we define a Gaussi-
an kernel as the sum of the weights of several one-
dimensional Gaussian functions which are called G'(x):

1 2

G|i\/§

When multi-core probability density functions are used,
the dimension of problem (i=1...n) determines a single
probability density function. G'(x) is represented by three
parametric vectors where o is vector of the weights associat-
ed with any Gaussian function, 4' is middle vector, &' is
standard deviation vector and g/(x) is one-dimensional
Gaussian functions. The cardinal of all these vectors is equal
to the number of Gaussian functions of the Gaussian kernel.
For ease of use, k is used to describe it. Therefore:
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As such, the probability density function creates a simple
and logical sampling and provides greater flexibility than the
single Gaussian function.

2.3. Bee colony optimization (BCO)

The bees of a beehive can spread for miles around the
hive and search for and collect nectar. Of course, in this area,
nectar is only available in some places and in varying
amounts. The difference in the amount of nectar available at
each location requires a certain number of bees to collect
nectar given these values. Watch bees are tasked with search-
ing for a new nectar source (nectar). The process of search-
ing for a colony's food (a bee hive collection) is initiated by
watch bees that are sent to search for rich moths. Watch bees
randomly move from one flower to another.

Upon returning to a part of the hive as a showroom, these
bees watch the other bees in a rotating motion to inform the
three main features of the new beehives: distance, direction,
amount. A factor such as the amount of nectar compared to
other areas determines the number of bees assigned to this
nectar site. In parallel, worker bees returning from other moths
and collecting nectar at the spot inform other bees about the
amount of nectar remaining in their area. This news can have
three different reactions. First, this place needs more worker
bees. Second, the number of working bees present at this site is
sufficient. Third, the bees in this area should be reduced and
moved to another location. All of the above-mentioned steps
include what happens at any moment in a hive. Inspired by
humans today, this process has led to a model called the bee
algorithm that moves the search for the best answer.

This algorithm is one of the best algorithms ever presen-
ted. Because of its high flexibility in obtaining various func-
tions, whether it is a smooth slope function or a high rough-
ness slope function. The algorithm builds on the bee's collec-
tive life and finding high quality flower gardens and high
nectar value for bees [50]. As the bees first look for high
quality flowerbeds, after finding the flowerbeds, they bring
information about the flowerbeds to the hive, then, with the
information that the bees have brought to the hive, take some
of the bees with them to the location of the flowerbed and
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around it. To find a better one, in proportion to the quality of
the flowers found, search for more bees around it and conti-
nue this process to find the best and most optimal. This algo-
rithm is based on the behavior of the bees to find the appro-
priate flower for gathering nectar [51]. Bee algorithm is one
of the algorithms based on collective intelligence and the
result of the relationship of bees with each other [52].

In this algorithm, each bee alone is not able to find the
right flower, collaboration and information exchange be-
tween a set of bees for finding the right flower [49]. In the
bee algorithm, the bee community and colony consist of
three groups: hired bees, search bees, and watch bees [53]. In
this algorithm, each food source represents a possible solu-
tion to the optimization problem, and the amount of nectar in
each source indicates the quality of that resource [50]. In the
first stage, produce an initial population of answers equal to
the position of the food source, where indicates the number
of bees employed or searchers. Each answer (j=1.2.3..... SN)
is a D vector, where D is the number of optimization parame-
ters. Searcher bees select a food source. This choice is influ-
enced by the quality of the food source. The probability of
choosing each source is calculated by Equation (4):

it
>IN fity

(4)

R

where:

fit; — fit value of i.

Selection of the new food source (Vij) is made by Equa-
tion (5), according to the previous food source (Xij):
Vij = Xij +(Xij - ij) , (5)
where:

je{l.2...SN} and k ¢ {1.2...SN} random indicators are
selected. Although k is selected at random, it must be differ-
ent from j. In the bee algorithm, if a food source does not
recover after a certain iteration, it is called that abandoned
food source. In this case, the bees watch according to Equa-
tion (6) and they will randomly replace a new food source:

where:
j — equal to the number of optimization variables.

Ny

Xd = X1+ rand [0.1](X,%ax min ©)

2.4. Particle swarm optimization (PSO)

In engineering and management sciences, optimization
means achieving an optimal state of production with the
lowest possible cost and maximum path efficiency. In pro-
gramming and mathematics, optimization is defined as the
process by which the selection and design of data structures
and the appropriate algorithms and instructions will produce
the most efficient applications. The PSO algorithm, which
stands for particle swarm optimization means cumulative
particle optimization. The PSO algorithm is the most opti-
mized algorithm with regard to the behaviors that govern the
life of birds and creatures. Experimental studies have shown
that the redshift of each particle is due to the flight pattern of
the neighboring particles, and the pattern of each particle is
modeled to one side and then optimized. In general, optimi-
zation is the process of making something better, or in other
words, optimizing the inputs of a device that we want to
achieve the least or maximum result with our mathematical
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tests and processes. An aggregate particle optimization algo-
rithm starts with a group of random agents and then searches
for the optimal ones with updated products. Each particle is
treated as a point in the desired space, which is adjusted
according to its own motion experiences as well as those of
other particle motions. That particle is obtained. Other pa-
rameters that are important in this algorithm are:

— every particle is looking for the best spot;

— each particle is moving (otherwise it cannot search);

—s0, due to the movement of the particle, it has speed;

— this algorithm works based on particle motion and intel-
ligence;

—in this algorithm the concept of social interaction is
used to solve and optimize;

— the particles are in the search for a permanent solution
space and remember the situation where it worked best.

In this model, simple behaviors to find the nearest neigh-
bors are adjusted for pedestrians. This model of birds or fish
are randomly placed in a pixel table search space, with each
replication the nearest neighbor chosen and the velocity of the
node replaced by the nearest neighbor. This allows the group to
quickly converge in an indefinable direction without change.
To solve this problem, a component of insanity was used as a
random change in groups. To further develop this model, the
notion of birds or fish was added to the model as a memory of
the best positions of each member and its neighbors. The best
previous position of any member is the best position that mem-
ber has ever had since his or her life. Best Neighborhood is the
best situation met by a member’s neighbors.

These two best positions act as attraction points. The
group members’ positions can be updated using a set of sim-
ple rules. This allows the member to move toward one of the
two better positions. Over time, the members of the algo-
rithm gather around a target by repeating the algorithm. This
behavior was effective even without the coordination of
speed and factor of madness. The final model is called parti-
cle group optimization. The PSO algorithm is a social search
algorithm that is modeled on the behavior of a group of birds
and fish [54]. In PSO algorithm, the particles flow in the
search space. Changing the status of particles is based on
their own experience and knowledge of other particles [55].
The result of modeling of social behavior is the search pro-
cess that particles tend to better position [56].

In the first step, we quantify the particle to obtain the re-
sponse [57]. After quantification, in the second step, the
particles are evaluated for their suitability and value [58]. In
the third step, considering the location of each particle in the
group and the best global location, the particles are compared
to determine the best value of each particle and the best
global value within the group in terms of the target [59]. In
the next step, if we reach the right criterion, then the search is
over and we get the answer. Otherwise the particles will be
updated again in terms of their speed and location and their
previous speed and location, and again the particle of step
two. The cycle begins to continue until it reaches the appro-
priate criterion for stopping [60]. The new position and ve-
locity of each particle changes as follows:

V(t+1) = wy; (t)+Clr1( p_best - Xi(t))+
: ()
+Cyly (g _best — Xi(t) );
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Xi(ts1) = Xi(t) PVi(t+1) ®)
where:

Vi (t + 1) — the particle velocity i in the new iteration;

Vi(t) — the velocity of the particle i in the previous
iteration;

p_best (i) — the best position that particle i has ever had;

Xi (t) — the current position of the particle;

Xi (t + 1) — the current position of the particle in the new
iteration;

g_best (i) — the best position of the best particle (the best
position all particles have ever had);

ri, r, —two random numbers between zero and one that
are used to maintain group diversity;

C1, C, —the cognitive and social parameters, respectively.
Selecting the appropriate value for these parameters results in
accelerating algorithm convergence and preventing prema-
ture convergence in local optimization. Recent research
shows that choosing a larger value for the cognitive parame-
ters. w is the weighted inertia, which is used to guarantee the
convergence of the particle. Weight inertia is used to control
the effect of past speed records on current speeds. The basis
of PSO’s work is each particle adjusts to best location and
the total location of neighbors.

2.5. Data analysis

By examining each of the parameters in the mathematics
calculation, it can be said that all the parameters show their
maximum correlation with the penetration rate when the
equation between them is power and Linear. Hence the equa-
tion is chosen on this basis. In this study, we consider an
equation that has been investigated using all three algo-
rithms. In this study, we divide the tunnel into four phases
(P1, P2, P3, P4). The descriptive statistic of database for
Sabzkooh water conveyance tunnel presented in Table 1. The
equation chosen in this study as follows:

PR =W1UCS +BTS"? +W3.RQD +CW* +

, 9
+W5.E+PV6 sw7.D+W8.JA+ISWO,

3. The result of modeling

3.1. Results of ant colony optimization (ACO)

In models 1-4 for ant algorithm, the generated dataset is
separated into 4 steps, and then each step is employed to test
targets while the other steps are employed to train sets. In
model 5, 100% of the dataset was employed to train and then
each step of the dataset (P1-P4) was employed for testing for
the various models. Finally, model 6 was improved using 85%
of training dataset and 15% of testing dataset for ant algorithm.
Our result is that model 6 and its attained equation are suffi-
cient accurate, since the prediction of penetration rate for ant
algorithm is R = 0.8830 and RMSE = 0.6955 of best model in
the Sabzkooh water conveyance tunnel. Coefficient of deter-
mination (R?), RMSE and coefficient of weighting of the ant
algorithm for prediction of TBM penetration rate in the Sab-
zkooh water conveyance tunnel for all models are shown in
Table 2. The distribution chart and the matching chart of the
measured values of penetration rate or target and the predicted
penetration rate values by the prediction model of the top
model are shown in Figures 2 and 3, respectively. Also, the
equation obtained using ACO described in Equation (10).
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Table 1. Descriptive statistic of database for Sabzkooh water conveyance tunnel

Brazilian

Uniaxial tensile Rock Elasticit
compressive quality ~ Cohesion, Y Poisson’s Density, Jointangle, Joint spacing, Penetration
strength A modulus, - 3
strength (BTS) designation  MPa GPa ratio g/lcm deg. m rate, m/hr
(UCS), MPa MPa’ (RQD), %
Mean 29.9143 9.0483 44.87 15305 7.6068  0.2817 2.5015 32.96 0.937 7.5970
N 99 99 99 99 99 99 99 99 99 99
Std. deviation 19.14683 2.57292  15.107 1.10036 5.08426 0.05129 0.10905  6.838 0.3996 2.02355
Minimum 9.49 5.00 20 0.25 0.85 0.20 2.30 21 0.3 4.35
Maximum 70.00 15.00 67 3.73 18.92 0.36 2.70 45 1.6 11.37
Variance 366.601 6.620 228.217 1.211 25.850 0.003 0.012 46.753 0.160 4.095
Harmonic mean 20.3616 8.4174 38.22 0.7714  3.7956  0.2727  2.4968 31.43 0.746 7.0576
Geometric mean 24.4594 8.7174 41.78 11124 57157  0.2771  2.4992 32.21 0.843 7.3261
Std. errorof mean  1.92433  0.25859 1.518 0.11059 0.51099 0.00515 0.01096  0.687 0.0402 0.20337
Table 2. Ant algorithm results for six various models
Coefficient of weighting Model evaluation
Training Testing W5 W6 W8 W9
Model w1 w2 w3 w4 . . w7 . .
dataset  dataset ’ 2
ucCs BTS RQD  Cohesion Elasticity Poisson’s Density Joint Joint R RMSE
modulus  ratio angle  spacing
1 P2-P3-P4  P1 -0.0028 0.0319 -0.2090 0.6234 -1.9245 0.9555 -2.1324 -0.2305 2.9876 0.8211 0.8321
2 P1-P3-P4 P2 -0.0023 0.0237 -0.3118 0.5228 -1.7243 0.9339 -1.7654 -0.2977 2.8765 0.8422 0.7814
3 P1-P2-P4  P3 -0.0030 0.0252 -0.3020 0.4620 -1.8133 0.9876 -2.3145 -0.2140 2.4612 0.8021 0.9134
4 P1-P2-P3 P4 -0.0039 0.0262 -0.3131 0.5918 1.9776- 0.9111 -1.9970 -0.2906 2.5543 0.8334 0.7987
100% P1 -0.0034 0.0259 -0.3122 0.4865 -1.6234 0.9075 -1.7643 -0.1861 2.6543 0.7986 0.9543
5 OJS‘:??Z? P2 -0.0034 0.0259 -0.3122 0.4865 -1.6234 0.9075 -1.7643 -0.1861 2.6543 0.8654 0.7865
training in P3 -0.0034 0.0259 -0.3122 0.4865 -1.6234 0.9075 -1.7643 -0.1861 2.6543 0.8532 0.8123
the model P4 -0.0034 0.0259 -0.3122 0.4865 -1.6234 0.9075 -1.7643 -0.1861 2.6543 0.8421 0.8234
85% 15%
6 of all ofall -0.0025 0.0209 -0.3927 0.3754 -1.4123 0.8865 -1.5321 -0.2897 2.5411 0.8830 0.6955
dataset  dataset
PR =-0.0025UCS + BTS%%2%° _0.3927.RQD + C%37%* _1.4123 E + P28855 _1 5321.D - 0.2897.JA+ 525411 | (10)

Output ~= 0.94*Target + 0.35
((Predicted PR(m/h))

6 7 8
((Measured PR(m/h))
Target

Figure 2. The distribution chart of the measured values of penetra-
tion rate or target and the predicted penetration rate va-
lues by the prediction model of the top model using ACO

3.2. Results of bee colony optimization (BCO)

In models 1-4 for bee algorithm, the generated dataset is
separated into 4 steps, and then each step is employed to test
targets while the other steps are employed to train sets. In
model 5, 100% of the dataset was employed to train and then
each step of the dataset (P1-P4) was employed for testing for
the various models. Finally, model 6 was improved using

85% of training dataset and 15% of testing dataset for bee
algorithm. Our result is that model 6 and its attained equation
are sufficient accurate, since the prediction of penetration
rate for bee algorithm is R? = 0.9367 and RMSE = 0.5113 of
best model in the Sabzkooh water conveyance tunnel. Coef-
ficient of determination (R?), RMSE and coefficient of
weighting of the bee algorithm for prediction of TBM pene-
tration rate in the Sabzkooh water conveyance tunnel for all
models are shown in Table 3. The distribution chart and the
matching chart of the measured values of penetration rate or
target and the predicted penetration rate values by the predic-
tion model of the top model are shown in Figures 4 and 5,
respectively. Also, the equation obtained using BCO de-
scribed in Equation (11).

3.3. Results of bee colony optimization (BCO)

In models 1-4 for PSO algorithm, the generated dataset
is separated into 4 steps, and then each step is employed to
test targets while the other steps are employed to train sets.
In model 5, 100% of the dataset was employed to train and
then each step of the dataset (P1-P4) was employed for
testing for the various models. Finally, model 6 was im-
proved using 85% of training dataset and 15% of testing
dataset for PSO algorithm. Our result is that Model 6 and
its attained equation are sufficient accurate, since the pre-
diction of penetration rate for bee algorithm is R? = 0.9717
and RMSE = 0.3418 of best model in the Sabzkooh water
conveyance tunnel.
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Figure 3. The matching chart of the measured values of penetration rate or target and the predicted penetration rate values by the predic-

tion model of the top model using ACO

Table 3. Bee algorithm results for six various models

Coefficient of weighting

Model evaluation

Training Testing W5 W6 w8 W9
Model dataset  dataset L\J/\éls I\3/¥'25 RY(\SSI; Cox\elgion Elasticity Poisson’s D;/r\(;ty Joint Joir_wt R? RMSE
modulus  ratio angle  spacing
1 P2-P3-P4 Pl  -0.0028 0.0319 -0.2089 0.6297 -1.9287 0.9532 -2.1376 -0.2322 29810 0.9020 0.6210
2 P1-P3-P4 P2  -0.0023 00237 -0.3129 05209 -1.7276 0.9387 -1.7678 -0.2934 2.8722 09132 0.5911
3  P1-P2-P4 P3  -0.0030 0.0252 -0.3031 04696 -1.8154 0.9898 -2.3132 -0.2111 2.4631 0.8876 0.6543
4  P1-P2-P3 P4  -0.0039 0.0251 -0.3144 05921 1.9732- 0.9143 -1.9911 -0.2987 25511 0.8976 0.6432
100% Pl -0.0034 00232 -0.3198 0.4811 -1.6270 09094 -1.7612 -0.1832 2.6566 0.8765 0.7654
. Ofd‘;t?%t P2 -0.0034 0.0232 -0.3198 04811 -1.6270 0.9094 -1.7612 -0.1832 2.6566 0.8321 0.9865
wamingin 3 00034 00232 03198 04811 -16270 09094 -17612 -01832 26566 08431 0.8786
the model P4  -0.0034 0.0232 -0.3198 04811 -1.6270 0.9094 -1.7612 -0.1832 2.6566 0.8123 0.9221
85% 15%
6 ofall  ofall -0.0025 00224 -0.3999 0.3779 -1.4186 0.8898 -1.5398 -0.2811 25497 0.9367 0.5113
dataset  dataset
PR =-0.0025UCS + BTS%%224 _0.3999.RQD + %377 _1.4186.E + P*88% _1 5398.D - 0.2811.JA+ J5 2497 (11)

0.95*Target + 0.32

((Predicted PR(m/h))

Output ~

6 7 8
((Measured PR(m/h))
Target

Figure 4. The distribution chart of the measured values of penetra-
tion rate or target and the predicted penetration rate va-
lues by the prediction model of the top model using BCO
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Coefficient of determination (R?), RMSE and coefficient
of weighting of the PSO algorithm for prediction of TBM
penetration rate in the Sabzkooh water conveyance tunnel for
all models are shown in Table 4. The distribution chart and
the matching chart of the measured values of penetration rate
or target and the predicted penetration rate values by the
prediction model of the top model are shown in Figure 6 and
7, respectively. Also, the equation obtained using PSO de-
scribed in Equation (12).

4. Conclusions

Many problems are repeatedly experienced through the
geotechnical assignments Such as tunnel mechanized exca-
vating. To be able to overcome these problems, several pre-
diction methods have been used to optimize of TBMs. One
of the problems is the penetration rate prediction since it
performs an important role in the costs and time scheduling
of tunneling project. Penetration rate prediction can be used
to reduce costs of tunneling project.
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Figure 5. The matching chart of the measured values of penetration rate or target and the predicted penetration rate values by the predic-

tion model of the top model using BCO

Table 4. PSO algorithm results for six various models

Coefficient of weighting

Model evaluation

Training Testing W5 W6 W8 W9
Model dataset  dataset L\J/\cl:ls é?ll_zs RVéPIJD Cox\égion Elasticity Poisson’s D(\e/r\lls7ity Joint Joir_wt R? RMSE
modulus  ratio angle  spacing
1 P2-P3-P4 P1  -0.0028 0.0319 -0.2011 0.6256 -1.9211 0.9587 -2.1322 -0.2309 2.9799 0.8976 0.9125
2 P1-P3-P4 P2  -0.0023 0.0237 -0.3110 05267 -1.7210 0.9376 -1.7611 -0.2912 2.8764 0.9345 0.6532
3 P1-P2-P4 P3  -0.0030 0.0252 -0.3021 0.4649 -1.8112 0.9865 -2.3119 -0.2199 2.4699 0.9432 0.5321
4  P1-P2-P3 P4  -0.0039 0.0282 -0.3121 05997 1.9710- 09122 -1.9932 -0.2912 2.5588 0.9322 0.5876
100% P1  -0.0034 0.0265 -0.3145 0.4876 -1.6221 0.9011 -1.7688 -0.1801 2.6599 0.9567 0.4987
ofdataset  pr 00034 00265 -0.3145 0.4876 -1.6221 0.9011 -1.7688 -0.1801 2.6599 0.9087 0.8976
5 tr‘;ﬁ?n?irn P3  -0.0034 00265 -0.3145 04876 -1.6221 09011 -1.7688 -0.1801 2.6599 0.9123 0.7965
themodel P4  -0.0034 0.0265 -0.3145 0.4876 -1.6221 0.9011 -1.7688 -0.1801 2.6599 0.9211 0.7896
85% 15%
6 of all ofall -0.0025 0.0255 -0.3956 0.3798 -1.4119 0.8810 -1.5306 -0.2802 2.5422 0.9717 0.3418
dataset  dataset
PR =-0.0025UCS + BTS%92% _0.3956.RQD + C?3/%® _1.4119.E + P?®810 _1 5306.D — 0.2802.JA+ JS 25422 | (12)
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Figure 6. The distribution chart of the measured values of penetra-
tion rate or target and the predicted penetration rate va-
lues by the prediction model of the top model using PSO
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In this research, field data including rock properties and
the measured penetration rate of TBMs are presented using
ant algorithm, bee algorithm and PSO algorithm in the Sab-
zkooh water conveyance tunnel. In this study, the ant algo-
rithm, bee algorithm and PSO algorithm have been utilized
for predicting TBM penetration rate in the Sabzkooh water
conveyance tunnel.

Parameters including UCS (MPa), BTS (MPa), RQD (%),
cohesion (MPa), elasticity modulus (GPa), Poisson’s ratio,
density (g/cm?), joint angle (deg.), joint spacing (m) have
significant effect on the penetration rate. Six ant, bee and
PSO models were generated using the improved dataset in
various ways.

In models 1-4 for all three algorithms, the generated da-
taset is separated into 4 steps, and then each step is employed
to test targets while the other steps are employed to train sets.
In model 5, 100% of the dataset was employed to train and
then each step of the dataset (P1-P4) was employed for test-
ing for the various models.
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Figure 7. The matching chart of the measured values of penetration rate or target and the predicted penetration rate values by the predic-

tion model of the top model using PSO

Finally, model 6 was improved using 85% of training
dataset and 15% of testing dataset for all three algorithms.
Our result is that model 6 and its attained equation are suf-
ficient accurate, since the prediction of penetration rate for
ACO is R?=0.8830 and RMSE =0.6955; BCO is
R?=0.9367 and RMSE =0.5113 and PSO is R?=0.9717
and RMSE =0.3418, meaning that the results acceptable
for using to prediction of TBM penetration rate. Also, the
results showed that PSO algorithm has a tangible advantage
over other algorithms.
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IIporno3yBaHHsl IBUAKOCTI MPOXOAKH TYHe1eNPOXiTHNILKOI0 KoMOaiiHa 3a 10IOMOTI010
MYPAIIMHOI0 AJITOPUTMY ONTHMi3anii, 61K0OJMHOr0 AJITOPUTMY ONTHUMIi3anii Ta
ONTHMi3alii METOJO0M POI0 YACTHHOK (Ha MPHKJIaAi BOAOCTIYHOrO TyHe 10 Sabzkooh, Ipan)

A. Adpani, A. Edpaximabani, T. Xammamksa

Merta. CTBOpeHHSI HOBOTO HiIX0Ay IO MPOTHO3Y Ta OL[IHKH MIBUIKOCTI MPOXOJIKHU TyHeIenpoxigHoro kombaitna (TIIK) B ymoBax pizHHX
TOpi/l Ha OCHOB1 BUKOPHCTaHHS CIIEU(DIYHUX METOAIB ONTHMi3aLlii.

Metoauka. MeToau T0CTiIKEHHS BKIIIOYAIOTh MypaminHuid anroput™ onrtumizanii (MAO), 6mkonuauit anroputM ontumizanii (BAO) i
ontuMizamiro MerogoM poro dactnHok (OMPY). CtBopeHa Benmmka 0a3za JaHUX 3 MPOAYKTUBHOCTI KOMOaiHa i3 BUKOPHCTAHHSM IIBHIKOCTI
TIPOXOAKH B SIKOCTI BUXIJHOTO IIapaMeTpa, a TAKOXK TAKKX BXITHUX MapamMeTpiB HEMOPYIIEHOI HOPOH i TOPOAHOTO MAaCHBY, SIK MIIHICTh Ha CTHCK
(TIIC) (MITa), mirHiCTs Ha PO3TAT, SIKA BUMIpIOEThCs “OpasmibchknM TectoM” (BITP) (MIla), mokasnuk sixocti 1pyHTY (ITKI) (%), 3B’s13HICTH
rpynty (MIa), momysts npyxHocti (ITla), koedinient [TyaccoHa, minbHicTb (r/cMS), KyT CTHKYBaHHs (Tpajl.) Ta BiICTaHb Mik IIBaMH (M).

Pe3ynbTaTn. BukoHaHo aHaii3 B XOZi JOCIIDKEHHS, KUl JO3BOJIMB CTBOPHUTH KijbKa HaliHHUX PEATICTUYHHUX MOJENIEH Ul IPOTHO3Y-
BanHs mBHAKocTi mpoxoaku TIIK. Moaens, mo6ynosana Ha MAO, mae koediuicHT aetepminanii R? = 0.88 i kopiHb i3 cepeaHbOro KBaapara
Bigxunenas RMSE = 0.69, BAO-mozeni — R2=0.93 i RMSE = 0.51, Ta OMPY-mozeni — R?=0.97 i RMSE = 0.34.

HayxoBa HoBHM3Ha. Briepme nporsosyBanacs mBrakicTs npoxoaku TIIK i3 BUKOpHCTaHHSAM BHIIEOMHCAHUX METOJIB Ha IPHUKIAIl BO-
JOCTIYHOTO TyHENo Sabzkooh.

IIpakTHyHa 3HAYAMIiCTb. Pe3ynbTaTd TOCTIIPKEHHS € MIHHUMH JUIS IPOSKTYBaHHS B TOHENIEOYIBHUITBI. 3aIIpOIIOHOBAHI HOBI I IXOH
BHSIBIJINCS BeJIbMHU e(heKTuBHUMH, Tpore OMPY anroput™m 103B0jIsI€ OTprMAaTH OUIBII TOYHI i peaicTHYHI JaHi.

Knrwwuosi cnosa: mynenenpoxionuybkuil KomOaiH, weUOKicms npoxooku, eodocmiunuti mynens Sabzkooh, mypawwunuil ancopumm
onmumizayii, 6ONCONUHUL ANOPUMM ORMUMIZAYIT Ma ONMUMI3AYIS MEMOOOM POIO YACMUHOK

IIporuo3upoBanne CKOPOCTH NPOXOAKH TYHHEJIENPOX0AUeCKOro KoM0aiiHa ¢ MOMOIIBIO
MYPaBbHHOI0 AJTOPUTMA ONTHMHM3ALMHU, MYEJMHOI0 AJITOPUTMA ONTHMHU3ALUA U
ONTHMM3AIUU METOJ0OM POs YACTHI (HAa mMpuMepe BojocTouHoro Tynnens Sabzkooh, Upan)

A. Adpanu, A. Dopaxumabaau, T. Xamramksa

Heas. Co3nanne HOBOTO MOAXOAa K MPOTHO3Y M OLEHKE CKOPOCTH MPOXOIKM TyHHenempoxomdeckoro kombOaiiHa (TIIK) B ycmoBusx
Pa3IMYHBIX MOPOJ] HAa OCHOBE MCIIOIB30BAHUS CIICIU(PHIESCKIX METOJOB ONTHMHU3AIIH.

MeToanka. MeToabl HCCIEOBAHUS BKJIIOYAIOT MYPaBBHHBIN anroputM ontuMusanun (MAO), MUETWHBIH aarOpUTM ONTHMHU3AINH
(ITAO) u ontumu3anuio MeroxoM post yacturl (OMPY). Co3nana obmmpHast 6a3a JaHHBIX 110 IIPOM3BOAUTENILHOCTH KoMOaiHa ¢ NCIIOIb30-
BaHHMEM CKOPOCTH IIPOXOJIKH B KaUeCTBE BBIXOJHOTO IIApaMeTpa, a TAKKe TAKUX BXOJHBIX [TapaMeTPOB HEHAPYIIEHHOW IIOPOIBI ¥ TOPOTHOTO
MaccuBa, Kak npouHocth Ha cxatue (I1C) (MIla), npouHocTs Ha pacTsbkeHue, uzMepsemas “OpasunbckuM Tectom” (BITP) (MlIla), mokasa-
Tenp kauectsa rpynta (IIKT) (%), cBasHocTs rpynTa (MIla), Moayis ynpyroctu (I'Tla), koaddurment ITyaccona, miotHocTs (r/cM?), yron
CTBIKOBKH (TPaj.) H PACCTOSHHAE MEXIy IIBaMH (M).

Pe3ynbTaThl. BeimonHeH aHanmu3 B X0J€ MCCIEI0BAaHUS, KOTOPBIH TTO3BOJIMI CO3/[aTh HECKOIBKO HA/IeKHBIX PEATUCTUYHBIX MOJETeH Uit
MporHO3uUpoBaHus ckopocTu npoxoaku TIK. Mogens, moctpoernas Ha MAO, umeeT ko3 urment netepmunanuu R? = 0.88 u kopenns U3
cpennero kBajapara otkioneHns RMSE = 0.69, [TAO-monenu — R%2=0.93 u RMSE = 0.51, u OMPU-monemu — R? = 0.97 u RMSE = 0.34.

Hayunas HoBu3Ha. Briepesie mporHo3upoBanack ckopocTs npoxoaku TIIK ¢ ucmonp30BaHIeM BBINIEONMCAHHBIX METOIOB Ha TIPUMeEpe
BOJIOCTOYHOTO TyHHels1 Sabzkooh.

IpakTHyeckast 3HAYMMOCTb. Pe3yJIbTaThl McCIeI0BaHNUS SBISIOTCS IEHHBIMH U1 IPOSKTHPOBAHUS B TOHHEJIECTPOSHNH. [IpeioxeHHbIe
HOBBIE MOAXO0/IbI OKA3aInCh BecbMa 3¢ dexTuBHbl, 0gHako OMPY anropuT™ mo3BosieT NOMy4UTh OoJiee TOUHbIC U PEaTUCTUYHBIC TaHHbIC.

Knrouesvie cnosa: mynnenenpoxooueckuii Komoaiin, ckopocms IPoxXooKu, 6000cmounsii myHHens Sabzkooh, mypasvunvlii areopumm
onmumu3ayul, NYeaUNbII aneopUmM ONMUMU3AYUL U ONMUMU3AYUL METOOOM POsL 4acmuy
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