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Abstract 

Purpose. The purpose of this study is to use a novel approach to estimate the tunnel boring machine (TBM) penetration rate 

in diverse ground conditions. 

Methods. The methods used in this study include ant colony optimization (ACO), bee colony optimization (BCO) and the 

particle swarm optimization (PSO). Moreover, a comprehensive database was created based on machine performance using 

penetration rate (m/h) as an output parameter – as well as intact rock and rock mass parameters including uniaxial compres-

sive strength (UCS) (MPa), Brazilian tensile strength (BTS) (MPa), rock quality designation (RQD) (%), cohesion (MPa), 

elasticity modulus (GPa), Poisson’s ratio, density(g/cm3), joint angle (deg.) and joint spacing (m) as input parameters. 

Findings. Results showed that the analyses yielded several realistic and reliable models for predicting penetration rate of 

TBMs. ACO model has R2 = 0.8830 and RMSE = 0.6955, BCO model has R2 = 0.9367 and RMSE = 0.5113 and PSO mo-

del has R2 = 0.9717 and RMSE = 0.3418. 

Originality. Prediction of TBM penetration rate using these methods has been carried out in the Sabzkooh water convey-

ance tunnel for the first time. 

Practical implications. According to the results, all three approaches are very effective but PSO yields more precise and 

realistic findings than other methods. 

Keywords: tunnel boring machine, penetration rate, Sabzkooh water conveyance tunnel, ant colony optimization, bee colony 

optimization, particle swarm optimization 

 

1. Introduction 

Today, in many major cities around the world, urban 

transport tunnels play an important role in human life, re-

quiring the use of advanced modern tools such as tunneling 

machines (TBMs) for excavating and carrying out these 

projects [1], [2]. The speed and quality of excavating have 

made these machines competitive with traditional meth-

ods [3], [4]. Predicting the performance of TBM is one of 

the crucial issues in estimating the cost of construction and 

execution of tunnel projects. TBM performance is highly 

depen-dent on the rate of penetration of the device and pene-

tration rate is one of the important factors the excavating 

rate or advance rate of TBM [5], [6].  

The penetration rate is a function of rock and machine 

properties [7]. The penetration rate is defined as the ratio of 

excavating distance to excavating time during a continuous 

excavating phase [8], [9]. TBM penetration rate estimates 

can be used to reduce the risks associated with the costs of 

current investment in excavating operations [10], [11]. Esti-

mating the penetration rate has a great impact on controlling 

the project time and choosing the excavating meth-

od [12], [13]. However, TBMs are susceptible to geological 

conditions such as fractures, cracks and swelling and rock 

explosions [14], [15]. The relationship between penetration 

rate and rock parameters has been investigated by some re-

searchers [16]-[23] and some have suggested using a rock 

mass classification to estimate the performance of 

TBMs [24]-[30]. Penetration rate prediction models used in 

engineering can be divided into three categories: 

1) experimental models; 

2) theoretical models; 

3) numerical models. 

Experimental models are often obtained by analyzing data 

from tunnel projects [31], [32], while theoretical models are 

obtained by performing laboratory tests and simulating reality 

in laboratories [33]-[35]. Recently, highly regarded numerical 

models are a new and less expensive method that reflects 

reality using project records [36]-[42]. In this study, ant colo-

ny optimization (ACO), bee colony optimization (BCO) and 

the particle swarm optimization (PSO) were used to predict 

TBM penetration rate in Sabzkooh water conveyance tunnel. 
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2. Materials and methods 

2.1. Sabzkooh water conveyance tunnel 

Sabzkooh water conveyance tunnel with an approximate 

length of 10700 meters and an excavating diameter of 

4.5 meters has been designed to transfer water from Sab-

zkooh Basin to Choghakhor Dam in Chaharmahal and 

Bakhtiari Province, about 80 km south of Shahrekord. Loca-

tion of the Sabzkooh water conveyance tunnel, фs can be 

seen in Figure1. 

 

 

Figure 1. Location of the Sabzkooh water conveyance tunnel 

2.2. Ant colony optimization (ACO) 

This method is inspired by the ability of ants to find the 

shortest path between a nest and a food source. As the ants 

move around, they leave a chemical called pheromone. When 

a population of ants traverses several paths between a nest 

and a food source, it is observed after a certain time that the 

number of pheromones left in the different paths varies. This 

is due to the fact that ants traveling the shorter route have 

more traffic due to the shorter route in a given period of time. 

Because the ants inherently choose the route that It has more 

pheromones, so it will be a while that the ants have chosen 

the shorter route. Using the ant’s method, a search method is 

implemented that uses every step of the information from the 

previous steps to reach the goal. The ant colony algorithm is 

inspired by studies and observations on ant colonies. 

These studies have shown that ants are social insects that 

live in colonies, and their behavior is more for the survival of 

the colonies than for the survival of a component. One of the 

most important ants of ants is their behavior in finding food, 

and in particular how to find the shortest route between food 

sources and nests. This kind of ant’s behavior has a kind of 

mass intelligence that has been the focus of scientists recent-

ly in the real world. They then return to the nest and leave a 

trail of Pheromone. Such rows turn white after rain and are 

visible. Other ants, when they find this path, sometimes give 

up roaming and follow it. Then, if they get food, they return 

home and leave another trail beside the previous one; in other 

words, they reinforce the previous route. The pheromone 

evaporates over time, which is useful in three ways, making 

it less attractive to subsequent ants. As an ant travels and 

reinforces shorter paths in the long run, each path between 

the house and the food that is shorter (better) is further 

strengthened and the farther away the less, and if the phero-

mone does not evaporate, the paths that have been repeated 

several times. They were so overwhelming that they limited 

the random search for food. Another advantage is that it stays 

off when the food ends at an attractive route. 

The problem is finding the shortest path and solving these 

artificial ants. The ant colony algorithm, or in fact “ant colo-

ny optimization” as the name implies, is based on the natural 

behavior of the ant colonies and the working ant. The process 

of finding food in the ant colony is very optimistic. When 

ants begin their exploration of food sources, they will natu-

rally find a “logical” and “optimal” route from their nest to 

food sources. In other words, the ant population is always 

able to find an optimal route to supply the food they need. 

Simulating such optimal behavior forms the basis of ant 

colony optimization. In this article, the ant colony algorithm 

is fully described. It should be noted that the exact name of 

this algorithm is ant colony optimization, which is often 

referred to as the ant algorithm or ant colony algorithm [43]. 

Imagine two ants moving from a nest to a food source 

through two completely different paths. As they move to-

ward the food source, the ants release a trace of pheromone 

into the environment that disintegrates naturally over time. 

In this case, on the way back to the nest, the ant will start 

releasing pheromones back into the environment, thereby 

strengthening the pheromone trace left in the shortest path. 

Other ants instinctively follow the strongest pheromone 

pathway in the environment and reinforce the pheromone 

pathway in this pathway. After a certain period of time, not 

only does the pheromone trace in the shortest path not col-

lapse, but it is further enhanced by the accumulation of other 

pheromone traces. The pathway where the strongest phero-

mone trace is left becomes the default path for ants to move 

from a colon to a food source and vice versa. The algorithms 

derived from the ant colony algorithm are a subset of swarm 

intelligence methods. These are the types of research and 

study areas that study algorithms inspired by the concept of 

“swarm behaviors”. Swarm intelligence algorithms consist of 

a set of simple individual entities that interact with one an-

other through “self-organizing”. Self-organization means the 

absence of a centralized control system to control and coor-

dinate the members of a crowded intelligence system. 

One of the algorithms used in this study is an ant colony 

optimization algorithm for continuous domains [44]. For the 

continuous optimization problem, a model can be formulated 

as P = (S Ω·f), where S defines all finite sets of discrete deci-

sion variables, Ω defines constraints between variables and a 

target function (f : S → R0+) which must be minimized or 

maximized [43], [45]. It should be noted that in ant colony 

optimization, the basis of work is the gradual construction of 

solutions based on the probability of solution components and 

the probability values are calculated based on the pheromone 

values of each component [46], [47]. In ant colony optimiza-

tion implemented in hybrid optimization problems, a set of 

parts related to the solution available is defined by the prob-

lem formula [48]. At each step of the construction, the ants 

make a possible selection of ci from N(sp) by Equation (1): 

( ) ( )

( ) ( )
( )pp p

ij ijij ij
p

il

cij
p c s c c N s

c N s cij



  





=   

 

,  (1) 

where: 

ij – the amount of pheromone linked to cij; 

η(0) – a weight function that assigns an innovative value 

to cilN(sp) at each step of making a value. 

The values determined by the weighting function are of-

ten referred to as apocalyptic information [49]. In addition, α 
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and β are positive parameters which values determine the 

relationship between pheromone information and heuristic 

information. For sampling and solution, we define a Gaussi-

an kernel as the sum of the weights of several one-

dimensional Gaussian functions which are called Gi(x): 

( ) ( )
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2
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1 1

1
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l

x

i ik k
l l ll l i

l
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


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 
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= =
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When multi-core probability density functions are used, 

the dimension of problem (i = 1…n) determines a single 

probability density function. Gi(x) is represented by three 

parametric vectors where ω is vector of the weights associat-

ed with any Gaussian function, μi is middle vector, δi is 

standard deviation vector and gl
i (x) is one-dimensional 

Gaussian functions. The cardinal of all these vectors is equal 

to the number of Gaussian functions of the Gaussian kernel. 

For ease of use, k is used to describe it. Therefore : 

i i k  = = = .             (3) 

As such, the probability density function creates a simple 

and logical sampling and provides greater flexibility than the 

single Gaussian function. 

2.3. Bee colony optimization (BCO) 

The bees of a beehive can spread for miles around the 

hive and search for and collect nectar. Of course, in this area, 

nectar is only available in some places and in varying 

amounts. The difference in the amount of nectar available at 

each location requires a certain number of bees to collect 

nectar given these values. Watch bees are tasked with search-

ing for a new nectar source (nectar). The process of search-

ing for a colony's food (a bee hive collection) is initiated by 

watch bees that are sent to search for rich moths. Watch bees 

randomly move from one flower to another. 

Upon returning to a part of the hive as a showroom, these 

bees watch the other bees in a rotating motion to inform the 

three main features of the new beehives: distance, direction, 

amount. A factor such as the amount of nectar compared to 

other areas determines the number of bees assigned to this 

nectar site. In parallel, worker bees returning from other moths 

and collecting nectar at the spot inform other bees about the 

amount of nectar remaining in their area. This news can have 

three different reactions. First, this place needs more worker 

bees. Second, the number of working bees present at this site is 

sufficient. Third, the bees in this area should be reduced and 

moved to another location. All of the above-mentioned steps 

include what happens at any moment in a hive. Inspired by 

humans today, this process has led to a model called the bee 

algorithm that moves the search for the best answer. 

This algorithm is one of the best algorithms ever presen-

ted. Because of its high flexibility in obtaining various func-

tions, whether it is a smooth slope function or a high rough-

ness slope function. The algorithm builds on the bee's collec-

tive life and finding high quality flower gardens and high 

nectar value for bees [50]. As the bees first look for high 

quality flowerbeds, after finding the flowerbeds, they bring 

information about the flowerbeds to the hive, then, with the 

information that the bees have brought to the hive, take some 

of the bees with them to the location of the flowerbed and 

around it. To find a better one, in proportion to the quality of 

the flowers found, search for more bees around it and conti-

nue this process to find the best and most optimal. This algo-

rithm is based on the behavior of the bees to find the appro-

priate flower for gathering nectar [51]. Bee algorithm is one 

of the algorithms based on collective intelligence and the 

result of the relationship of bees with each other [52]. 

In this algorithm, each bee alone is not able to find the 

right flower, collaboration and information exchange be-

tween a set of bees for finding the right flower [49]. In the 

bee algorithm, the bee community and colony consist of 

three groups: hired bees, search bees, and watch bees [53]. In 

this algorithm, each food source represents a possible solu-

tion to the optimization problem, and the amount of nectar in 

each source indicates the quality of that resource [50]. In the 

first stage, produce an initial population of answers equal to 

the position of the food source, where indicates the number 

of bees employed or searchers. Each answer (𝑗=1.2.3.…. 𝑆𝑁) 

is a D vector, where D is the number of optimization parame-

ters. Searcher bees select a food source. This choice is influ-

enced by the quality of the food source. The probability of 

choosing each source is calculated by Equation (4): 

1

i
i SN

NN

fit
P

fit−

=


,              (4) 

where: 

fiti – fit value of i. 

Selection of the new food source (Vij) is made by Equa-

tion (5), according to the previous food source (Xij): 

( )Vij Xij Xij Xkj= + − ,             (5) 

where: 

j є {1.2…SN} and k є {1.2…SN} random indicators are 

selected. Although k is selected at random, it must be differ-

ent from j. In the bee algorithm, if a food source does not 

recover after a certain iteration, it is called that abandoned 

food source. In this case, the bees watch according to Equa-

tion (6) and they will randomly replace a new food source: 

 ( )min max min
0.1

j ji j
iX X rand X X= + − ,           (6) 

where: 

j – equal to the number of optimization variables. 

2.4. Particle swarm optimization (PSO) 

In engineering and management sciences, optimization 

means achieving an optimal state of production with the 

lowest possible cost and maximum path efficiency. In pro-

gramming and mathematics, optimization is defined as the 

process by which the selection and design of data structures 

and the appropriate algorithms and instructions will produce 

the most efficient applications. The PSO algorithm, which 

stands for particle swarm optimization means cumulative 

particle optimization. The PSO algorithm is the most opti-

mized algorithm with regard to the behaviors that govern the 

life of birds and creatures. Experimental studies have shown 

that the redshift of each particle is due to the flight pattern of 

the neighboring particles, and the pattern of each particle is 

modeled to one side and then optimized. In general, optimi-

zation is the process of making something better, or in other 

words, optimizing the inputs of a device that we want to 

achieve the least or maximum result with our mathematical 
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tests and processes. An aggregate particle optimization algo-

rithm starts with a group of random agents and then searches 

for the optimal ones with updated products. Each particle is 

treated as a point in the desired space, which is adjusted 

according to its own motion experiences as well as those of 

other particle motions. That particle is obtained. Other pa-

rameters that are important in this algorithm are: 

– every particle is looking for the best spot; 

– each particle is moving (otherwise it cannot search); 

– so, due to the movement of the particle, it has speed; 

– this algorithm works based on particle motion and intel-

ligence; 

– in this algorithm the concept of social interaction is 

used to solve and optimize; 

– the particles are in the search for a permanent solution 

space and remember the situation where it worked best. 

In this model, simple behaviors to find the nearest neigh-

bors are adjusted for pedestrians. This model of birds or fish 

are randomly placed in a pixel table search space, with each 

replication the nearest neighbor chosen and the velocity of the 

node replaced by the nearest neighbor. This allows the group to 

quickly converge in an indefinable direction without change. 

To solve this problem, a component of insanity was used as a 

random change in groups. To further develop this model, the 

notion of birds or fish was added to the model as a memory of 

the best positions of each member and its neighbors. The best 

previous position of any member is the best position that mem-

ber has ever had since his or her life. Best Neighborhood is the 

best situation met by a member’s neighbors. 

These two best positions act as attraction points. The 

group members’ positions can be updated using a set of sim-

ple rules. This allows the member to move toward one of the 

two better positions. Over time, the members of the algo-

rithm gather around a target by repeating the algorithm. This 

behavior was effective even without the coordination of 

speed and factor of madness. The final model is called parti-

cle group optimization. The PSO algorithm is a social search 

algorithm that is modeled on the behavior of a group of birds 

and fish [54]. In PSO algorithm, the particles flow in the 

search space. Changing the status of particles is based on 

their own experience and knowledge of other particles [55]. 

The result of modeling of social behavior is the search pro-

cess that particles tend to better position [56]. 

In the first step, we quantify the particle to obtain the re-

sponse [57]. After quantification, in the second step, the 

particles are evaluated for their suitability and value [58]. In 

the third step, considering the location of each particle in the 

group and the best global location, the particles are compared 

to determine the best value of each particle and the best 

global value within the group in terms of the target [59]. In 

the next step, if we reach the right criterion, then the search is 

over and we get the answer. Otherwise the particles will be 

updated again in terms of their speed and location and their 

previous speed and location, and again the particle of step 

two. The cycle begins to continue until it reaches the appro-

priate criterion for stopping [60]. The new position and ve-

locity of each particle changes as follows: 

( ) ( ) ( )( )

( )( )
1 1

2 2

1 _

_ ;

i i t

i t

V t wV t C r p best x

C r g best x

+ = + − +

+ −

,           (7) 

( ) ( ) ( )1 1i t i t i tX X V+ += + ,             (8) 

where: 

Vi (t + 1) – the particle velocity i in the new iteration; 

Vi(t) – the velocity of the particle i in the previous  

iteration; 

p_best (i) – the best position that particle i has ever had; 

Xi (t) – the current position of the particle; 

Xi (t + 1) – the current position of the particle in the new 

iteration; 

g_best (i) – the best position of the best particle (the best 

position all particles have ever had); 

r1, r2 – two random numbers between zero and one that 

are used to maintain group diversity; 

C1, C2 – the cognitive and social parameters, respectively. 

Selecting the appropriate value for these parameters results in 

accelerating algorithm convergence and preventing prema-

ture convergence in local optimization. Recent research 

shows that choosing a larger value for the cognitive parame-

ters. w is the weighted inertia, which is used to guarantee the 

convergence of the particle. Weight inertia is used to control 

the effect of past speed records on current speeds. The basis 

of PSO’s work is each particle adjusts to best location and 

the total location of neighbors. 

2.5. Data analysis 

By examining each of the parameters in the mathematics 

calculation, it can be said that all the parameters show their 

maximum correlation with the penetration rate when the 

equation between them is power and Linear. Hence the equa-

tion is chosen on this basis. In this study, we consider an 

equation that has been investigated using all three algo-

rithms. In this study, we divide the tunnel into four phases 

(P1, P2, P3, P4). The descriptive statistic of database for 

Sabzkooh water conveyance tunnel presented in Table 1. The 

equation chosen in this study as follows: 

2 4

6 9

1. 3.

5. 7. 8. .

W W

W W

PR W UCS BTS W RQD C

W E P W D W JA JS

= + + + +

+ + + + +

,          (9) 

3. The result of modeling 

3.1. Results of ant colony optimization (ACO) 

In models 1-4 for ant algorithm, the generated dataset is 

separated into 4 steps, and then each step is employed to test 

targets while the other steps are employed to train sets. In 

model 5, 100% of the dataset was employed to train and then 

each step of the dataset (P1-P4) was employed for testing for 

the various models. Finally, model 6 was improved using 85% 

of training dataset and 15% of testing dataset for ant algorithm. 

Our result is that model 6 and its attained equation are suffi-

cient accurate, since the prediction of penetration rate for ant 

algorithm is R2 = 0.8830 and RMSE = 0.6955 of best model in 

the Sabzkooh water conveyance tunnel. Coefficient of deter-

mination (R2), RMSE and coefficient of weighting of the ant 

algorithm for prediction of TBM penetration rate in the Sab-

zkooh water conveyance tunnel for all models are shown in 

Table 2. The distribution chart and the matching chart of the 

measured values of penetration rate or target and the predicted 

penetration rate values by the prediction model of the top 

model are shown in Figures 2 and 3, respectively. Also, the 

equation obtained using ACO described in Equation (10). 
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Table 1. Descriptive statistic of database for Sabzkooh water conveyance tunnel 

 

Uniaxial 

compressive 

strength 

(UCS), MPa 

Brazilian 

tensile 

strength 

(BTS), 

MPa 

Rock 

quality 

designation 

(RQD), % 

Cohesion, 

MPa 

Elasticity 

modulus, 

GPa 

Poisson’s 

ratio 

Density, 

g/cm3 

Joint angle, 

deg. 

Joint spacing, 

m 

Penetration 

rate, m/hr 

Mean 29.9143 9.0483 44.87 1.5305 7.6068 0.2817 2.5015 32.96 0.937 7.5970 

N 99 99 99 99 99 99 99 99 99 99 

Std. deviation 19.14683 2.57292 15.107 1.10036 5.08426 0.05129 0.10905 6.838 0.3996 2.02355 

Minimum 9.49 5.00 20 0.25 0.85 0.20 2.30 21 0.3 4.35 

Maximum 70.00 15.00 67 3.73 18.92 0.36 2.70 45 1.6 11.37 

Variance 366.601 6.620 228.217 1.211 25.850 0.003 0.012 46.753 0.160 4.095 

Harmonic mean 20.3616 8.4174 38.22 0.7714 3.7956 0.2727 2.4968 31.43 0.746 7.0576 

Geometric mean 24.4594 8.7174 41.78 1.1124 5.7157 0.2771 2.4992 32.21 0.843 7.3261 

Std. error of mean 1.92433 0.25859 1.518 0.11059 0.51099 0.00515 0.01096 0.687 0.0402 0.20337 

Table 2. Ant algorithm results for six various models 

Model evaluation Coefficient of weighting 

Testing 

dataset 

Training 

dataset 
Model 

RMSE R2 

W9 

Joint 

spacing 

W8 

Joint 

angle 

W7 

Density 

W6 

Poisson’s 

ratio 

W5 

Elasticity 

modulus 

W4 

Cohesion 

W3 

RQD 

W2 

BTS 

W1 

UCS 

0.8321 0.8211 2.9876 -0.2305 -2.1324 0.9555 -1.9245 0.6234 -0.2090 0.0319 -0.0028 P1 P2-P3-P4 1 

0.7814 0.8422 2.8765 -0.2977 -1.7654 0.9339 -1.7243 0.5228 -0.3118 0.0237 -0.0023 P2 P1-P3-P4 2 

0.9134 0.8021 2.4612 -0.2140 -2.3145 0.9876 -1.8133 0.4620 -0.3020 0.0252 -0.0030 P3 P1-P2-P4 3 

0.7987 0.8334 2.5543 -0.2906 -1.9970 0.9111 1.9776- 0.5918 - 0.3131 0.0262 -0.0039 P4 P1-P2-P3 4 

0.9543 0.7986 2.6543 -0.1861 -1.7643 0.9075 -1.6234 0.4865 -0.3122 0.0259 -0.0034 P1 100% 

of dataset 

used for 

training in 

the model 

5 
0.7865 0.8654 2.6543 -0.1861 -1.7643 0.9075 -1.6234 0.4865 -0.3122 0.0259 -0.0034 P2 

0.8123 0.8532 2.6543 -0.1861 -1.7643 0.9075 -1.6234 0.4865 -0.3122 0.0259 -0.0034 P3 

0.8234 0.8421 2.6543 -0.1861 -1.7643 0.9075 -1.6234 0.4865 -0.3122 0.0259 -0.0034 P4 

0.6955 0.8830 2.5411 -0.2897 -1.5321 0.8865 -1.4123 0.3754 -0.3927 0.0209 -0.0025 

15%  

of all 

dataset 

85%  

of all 

dataset 

6 

0.0209 0.3754 0.8865 2.54110.0025. 0.3927. 1.4123. 1.5321. 0.2897.PR UCS BTS RQD C E P D JA JS= − + − + − + − − + .              (10) 

 

Figure 2. The distribution chart of the measured values of penetra-

tion rate or target and the predicted penetration rate va-

lues by the prediction model of the top model using ACO 

3.2. Results of bee colony optimization (BCO) 

In models 1-4 for bee algorithm, the generated dataset is 

separated into 4 steps, and then each step is employed to test 

targets while the other steps are employed to train sets. In 

model 5, 100% of the dataset was employed to train and then 

each step of the dataset (P1-P4) was employed for testing for 

the various models. Finally, model 6 was improved using 

85% of training dataset and 15% of testing dataset for bee 

algorithm. Our result is that model 6 and its attained equation 

are sufficient accurate, since the prediction of penetration 

rate for bee algorithm is R2 = 0.9367 and RMSE = 0.5113 of 

best model in the Sabzkooh water conveyance tunnel. Coef-

ficient of determination (R2), RMSE and coefficient of 

weighting of the bee algorithm for prediction of TBM pene-

tration rate in the Sabzkooh water conveyance tunnel for all 

models are shown in Table 3. The distribution chart and the 

matching chart of the measured values of penetration rate or 

target and the predicted penetration rate values by the predic-

tion model of the top model are shown in Figures 4 and 5, 

respectively. Also, the equation obtained using BCO de-

scribed in Equation (11). 

3.3. Results of bee colony optimization (BCO) 

In models 1-4 for PSO algorithm, the generated dataset 

is separated into 4 steps, and then each step is employed to 

test targets while the other steps are employed to train sets. 

In model 5, 100% of the dataset was employed to train and 

then each step of the dataset (P1-P4) was employed for 

testing for the various models. Finally, model 6 was im-

proved using 85% of training dataset and 15% of testing 

dataset for PSO algorithm. Our result is that Model 6 and 

its attained equation are sufficient accurate, since the pre-

diction of penetration rate for bee algorithm is R2 = 0.9717 

and RMSE = 0.3418 of best model in the Sabzkooh water 

conveyance tunnel.  
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Figure 3. The matching chart of the measured values of penetration rate or target and the predicted penetration rate values by the predic-

tion model of the top model using ACO 

Table 3. Bee algorithm results for six various models 

Model evaluation Coefficient of weighting 

Testing 

dataset 

Training 

dataset 
Model 

RMSE R2 

W9 

Joint 

spacing 

W8 

Joint 

angle 

W7 

Density 

W6 

Poisson’s 

ratio 

W5 

Elasticity 

modulus 

W4 

Cohesion 

W3 

RQD 

W2 

BTS 

W1 

UCS 

0.6210 0.9020 2.9810 -0.2322 -2.1376 0.9532 -1.9287 0.6297 -0.2089 0.0319 -0.0028 P1 P2-P3-P4 1 

0.5911 0.9132 2.8722 -0.2934 -1.7678 0.9387 -1.7276 0.5209 -0.3129 0.0237 -0.0023 P2 P1-P3-P4 2 

0.6543 0.8876 2.4631 -0.2111 -2.3132 0.9898 -1.8154 0.4696 -0.3031 0.0252 -0.0030 P3 P1-P2-P4 3 

0.6432 0.8976 2.5511 -0.2987 -1.9911 0.9143 1.9732- 0.5921 - 0.3144 0.0251 -0.0039 P4 P1-P2-P3 4 

0.7654 0.8765 2.6566 -0.1832 -1.7612 0.9094 -1.6270 0.4811 -0.3198 0.0232 -0.0034 P1 100% 

of dataset 

used for 

training in 

the model 

5 
0.9865 0.8321 2.6566 -0.1832 -1.7612 0.9094 -1.6270 0.4811 -0.3198 0.0232 -0.0034 P2 

0.8786 0.8431 2.6566 -0.1832 -1.7612 0.9094 -1.6270 0.4811 -0.3198 0.0232 -0.0034 P3 

0.9221 0.8123 2.6566 -0.1832 -1.7612 0.9094 -1.6270 0.4811 -0.3198 0.0232 -0.0034 P4 

0.5113 0.9367 2.5497 -0.2811 -1.5398 0.8898 -1.4186 0.3779 -0.3999 0.0224 -0.0025 

15%  

of all 

dataset 

85%  

of all 

dataset 

6 

0.0224 0.3779 0.8898 2.54970.0025. 0.3999. 1.4186. 1.5398. 0.2811.PR UCS BTS RQD C E P D JA JS= − + − + − + − − + .              (11) 

 

Figure 4. The distribution chart of the measured values of penetra-

tion rate or target and the predicted penetration rate va-

lues by the prediction model of the top model using BCO 

Coefficient of determination (R2), RMSE and coefficient 

of weighting of the PSO algorithm for prediction of TBM 

penetration rate in the Sabzkooh water conveyance tunnel for 

all models are shown in Table 4. The distribution chart and 

the matching chart of the measured values of penetration rate 

or target and the predicted penetration rate values by the 

prediction model of the top model are shown in Figure 6 and 

7, respectively. Also, the equation obtained using PSO de-

scribed in Equation (12). 

4. Conclusions 

Many problems are repeatedly experienced through the 

geotechnical assignments Such as tunnel mechanized exca-

vating. To be able to overcome these problems, several pre-

diction methods have been used to optimize of TBMs. One 

of the problems is the penetration rate prediction since it 

performs an important role in the costs and time scheduling 

of tunneling project. Penetration rate prediction can be used 

to reduce costs of tunneling project.  
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Figure 5. The matching chart of the measured values of penetration rate or target and the predicted penetration rate values by the predic-

tion model of the top model using BCO 

Table 4. PSO algorithm results for six various models 

Model evaluation Coefficient of weighting 

Testing 

dataset 

Training 

dataset 
Model 

RMSE R2 

W9 

Joint 

spacing 

W8 

Joint 

angle 

W7 

Density 

W6 

Poisson’s 

ratio 

W5 

Elasticity 

modulus 

W4 

Cohesion 

W3 

RQD 

W2 

BTS 

W1 

UCS 

0.9125 0.8976 2.9799 -0.2309 -2.1322 0.9587 -1.9211 0.6256 -0.2011 0.0319 -0.0028 P1 P2-P3-P4 1 

0.6532 0.9345 2.8764 -0.2912 -1.7611 0.9376 -1.7210 0.5267 -0.3110 0.0237 -0.0023 P2 P1-P3-P4 2 

0.5321 0.9432 2.4699 -0.2199 -2.3119 0.9865 -1.8112 0.4649 -0.3021 0.0252 -0.0030 P3 P1-P2-P4 3 

0.5876 0.9322 2.5588 -0.2912 -1.9932 0.9122 1.9710- 0.5997 - 0.3121 0.0282 -0.0039 P4 P1-P2-P3 4 

0.4987 0.9567 2.6599 -0.1801 -1.7688 0.9011 -1.6221 0.4876 -0.3145 0.0265 -0.0034 P1 100% 

of dataset 

used for 

training in 

the model 

5 
0.8976 0.9087 2.6599 -0.1801 -1.7688 0.9011 -1.6221 0.4876 -0.3145 0.0265 -0.0034 P2 

0.7965 0.9123 2.6599 -0.1801 -1.7688 0.9011 -1.6221 0.4876 -0.3145 0.0265 -0.0034 P3 

0.7896 0.9211 2.6599 -0.1801 -1.7688 0.9011 -1.6221 0.4876 -0.3145 0.0265 -0.0034 P4 

0.3418 0.9717 2.5422 -0.2802 -1.5306 0.8810 -1.4119 0.3798 -0.3956 0.0255 -0.0025 

15%  

of all 

dataset 

85%  

of all 

dataset 

6 

0.0255 0.3798 0.8810 2.54220.0025. 0.3956. 1.4119. 1.5306. 0.2802.PR UCS BTS RQD C E P D JA JS= − + − + − + − − + .              (12) 

 

Figure 6. The distribution chart of the measured values of penetra-

tion rate or target and the predicted penetration rate va-

lues by the prediction model of the top model using PSO 

In this research, field data including rock properties and 

the measured penetration rate of TBMs are presented using 

ant algorithm, bee algorithm and PSO algorithm in the Sab-

zkooh water conveyance tunnel. In this study, the ant algo-

rithm, bee algorithm and PSO algorithm have been utilized 

for predicting TBM penetration rate in the Sabzkooh water 

conveyance tunnel. 

Parameters including UCS (MPa), BTS (MPa), RQD (%), 

cohesion (MPa), elasticity modulus (GPa), Poisson’s ratio, 

density (g/cm3), joint angle (deg.), joint spacing (m) have 

significant effect on the penetration rate. Six ant, bee and 

PSO models were generated using the improved dataset in 

various ways. 

In models 1-4 for all three algorithms, the generated da-

taset is separated into 4 steps, and then each step is employed 

to test targets while the other steps are employed to train sets. 

In model 5, 100% of the dataset was employed to train and 

then each step of the dataset (P1-P4) was employed for test-

ing for the various models.  
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Figure 7. The matching chart of the measured values of penetration rate or target and the predicted penetration rate values by the predic-

tion model of the top model using PSO 

Finally, model 6 was improved using 85% of training 

dataset and 15% of testing dataset for all three algorithms. 

Our result is that model 6 and its attained equation are suf-

ficient accurate, since the prediction of penetration rate for 

ACO is R2 = 0.8830 and RMSE = 0.6955; BCO is 

R2 = 0.9367 and RMSE = 0.5113 and PSO is R2 = 0.9717 

and RMSE = 0.3418, meaning that the results acceptable 

for using to prediction of TBM penetration rate. Also, the 

results showed that PSO algorithm has a tangible advantage 

over other algorithms. 
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Прогнозування швидкості проходки тунелепрохідницького комбайна за допомогою 

мурашиного алгоритму оптимізації, бджолиного алгоритму оптимізації та 

оптимізації методом рою частинок (на прикладі водостічного тунелю Sabzkooh, Іран) 

А. Афраді, А. Ебрахімабаді, Т. Халладжян 

Мета. Створення нового підходу до прогнозу та оцінки швидкості проходки тунелепрохідного комбайна (ТПК) в умовах різних 

порід на основі використання специфічних методів оптимізації. 

Методика. Методи дослідження включають мурашиний алгоритм оптимізації (МАО), бджолиний алгоритм оптимізації (БАО) і 

оптимізацію методом рою частинок (ОМРЧ). Створена велика база даних з продуктивності комбайна із використанням швидкості 

проходки в якості вихідного параметра, а також таких вхідних параметрів непорушеної породи і породного масиву, як міцність на стиск 

(ПС) (МПа), міцність на розтяг, яка вимірюється “бразильським тестом” (БПР) (МПа), показник якості ґрунту (ПКГ) (%), зв’язність 

ґрунту (МПа), модуль пружності (ГПа), коефіцієнт Пуассона, щільність (г/см3), кут стикування (град.) та відстань між швами (м). 

Результати. Виконано аналіз в ході дослідження, який дозволив створити кілька надійних реалістичних моделей для прогнозу-

вання швидкості проходки ТПК. Модель, побудована на МАО, має коефіцієнт детермінації R2 = 0.88 і корінь із середнього квадрата 

відхилення RMSE = 0.69, БАО-моделі – R2 = 0.93 і RMSE = 0.51, та ОМРЧ-моделі – R2 = 0.97 і RMSE = 0.34. 

Наукова новизна. Вперше прогнозувалася швидкість проходки ТПК із використанням вищеописаних методів на прикладі во-

достічного тунелю Sabzkooh. 

Практична значимість. Результати дослідження є цінними для проектування в тонелебудівництві. Запропоновані нові підходи 

виявилися вельми ефективними, проте ОМРЧ алгоритм дозволяє отримати більш точні і реалістичні дані. 

Ключові слова: тунелепрохідницький комбайн, швидкість проходки, водостічний тунель Sabzkooh, мурашиний алгоритм  

оптимізації, бджолиний алгоритм оптимізації та оптимізація методом рою частинок 

Прогнозирование скорости проходки туннелепроходческого комбайна с помощью 

муравьиного алгоритма оптимизации, пчелиного алгоритма оптимизации и 

оптимизации методом роя частиц (на примере водосточного туннеля Sabzkooh, Иран) 

А. Афради, А. Эбрахимабади, Т. Халладжян 

Цель. Создание нового подхода к прогнозу и оценке скорости проходки туннелепроходческого комбайна (ТПК) в условиях 

различных пород на основе использования специфических методов оптимизации. 

Методика. Методы исследования включают муравьиный алгоритм оптимизации (МАО), пчелиный алгоритм оптимизации 

(ПАО) и оптимизацию методом роя частиц (ОМРЧ). Создана обширная база данных по производительности комбайна с использо-

ванием скорости проходки в качестве выходного параметра, а также таких входных параметров ненарушенной породы и породного 

массива, как прочность на сжатие (ПС) (МПа), прочность на растяжение, измеряемая “бразильским тестом” (БПР) (МПа), показа-

тель качества грунта (ПКГ) (%), связность грунта (МПа), модуль упругости (ГПа), коэффициент Пуассона, плотность (г/см3), угол 

стыковки (град.) и расстояние между швами (м). 

Результаты. Выполнен анализ в ходе исследования, который позволил создать несколько надежных реалистичных моделей для 

прогнозирования скорости проходки ТПК. Модель, построенная на МАО, имеет коэффициент детерминации R2 = 0.88 и корень из 

среднего квадрата отклонения RMSE = 0.69, ПАО-модели – R2 = 0.93 и RMSE = 0.51, и ОМРЧ-модели – R2 = 0.97 и RMSE = 0.34. 

Научная новизна. Впервые прогнозировалась скорость проходки ТПК с использованием вышеописанных методов на примере 

водосточного туннеля Sabzkooh. 

Практическая значимость. Результаты исследования являются ценными для проектирования в тоннелестроении. Предложенные 

новые подходы оказались весьма эффективны, однако ОМРЧ алгоритм позволяет получить более точные и реалистичные данные. 

Ключевые слова: туннелепроходческий комбайн, скорость проходки, водосточный туннель Sabzkooh, муравьиный алгоритм 

оптимизации, пчелиный алгоритм оптимизации и оптимизация методом роя частиц 
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