Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Origin of barite deposits in dolomite-limestone units, Gazipasa, Eastern of Antalya: geology, geochemistry, statistics, sulfur isotope composition

Gulsum B. Kursun1, Mustafa G. Yalcin1

1University of Akdeniz, Antalya, 07058, Turkey

Min. miner. depos. 2020, 14(1):62-71

Full text (PDF)


      Purpose. Gazipasa region is one of the most important barite mineralization of Turkey. To investigate the main origin properties of Gazipasa barite deposits, conditions of their genesis and occurrence.

      Methods. To investigate the basic geological, geochemical, mineralogical, statistical, sulfur isotopic properties of Gazipasa barite deposits, conditions of their genesis and occurrence.

      Findings. Paragenesis of barites deposits can be presented as barite, galena sphalerite, pyrite, limonite, quartz and calcite. Also, there are lots of barite-galena ores around Gazipasa. In the wall rocks of vein, while barium occurence is low, limonite and gale-nite density is high. According to isotope analysis results, 34S ranks between 20.3 and 22.4. As indicated in the Rare Earth Еlements (REE) diagram, calculated values show that barites reflect sedimentary environment conditions. Barite formation in these reserves contains approximately 86-99% BaSO4 and it was determined to be mostly found in dolomites and lime-stones as lode, vein and veinlet.

      Originality.According to geological and mineralogical studies, barite formation in dolomite-limestone units occurred in sin-sedimentary stage conditions.

      Practical implications. Barites in the region are used because of their high tenor and closeness to the harbor.

      Keywords: barite, isotopic composition, sedimentary characteristics, 34S, genesis


  1. Ehya, F. (2011). Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Mineralogy and Petrology, 104(1-2), 81-93.
  2. Canet, C., Anadón, P., González-Partida, E., Alfonso, P., Rajabi, A., Pérez-Segura, E., & Alba-Aldave, L.A. (2014). Paleozoic bedded barite deposits from Sonora (NW Mexico): Evidence for a hydrocarbon seep environment of formation. Ore Geology Reviews, (56), 292-300.
  3. Eickmann, B., Thorseth, I.H., Peters, M., Strauss, H., Bröcker, M., & Pedersen, R.B. (2014). Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple‐isotope study from the Loki’s Castle vent field. Geobiology, 12(4), 308-321.
  4. Asl, S.M., Jafari, M., Sahamiyeh, R.Z., & Shahrokhi, V. (2015). Geology, geochemistry, sulfur isotope composition, and fluid inclusion data of Farsesh barite deposit, Lorestan Province, Iran. Arabian Journal of Geosciences, 8(9), 7125-7139.
  5. Han, S., Hu, K., Cao, J., Pan, J., Xia, F., & Wu, W. (2015). Origin of early Cambrian black-shale-hosted barite deposits in South China: Mineralogical and geochemical studies. Journal of Asian Earth Sciences, (106), 79-94.
  6. Zhou, X., Chen, D., Dong, S., Zhang, Y., Guo, Z., Wei, H., & Yu, H. (2015). Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications for barium and sulfur cycling in the earliest Cambrian. Precambrian Research, (263), 79-87.
  7. Magnall, J.M., Gleeson, S.A., Stern, R.A., Newton, R.J., Poulton, S.W., & Paradis, S. (2016). Open system sulphate reduction in a diagenetic environment – Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, (180), 146-163.
  8. Jirásek, J., Dolníček, Z., Matýsek, D., & Urubek, T. (2017). Genetic aspects of barite mineralization related to rocks of the teschenite association in the Silesian Unit, Outer Western Carpathians, Czech Republic. Geologica Carpathica, 68(2), 119-129.
  9. Gao, J., Yang, R., Chen, J., Zheng, L., Cheng, W., & Wei, H. (2017). Multiple proxies indicating methane seepage as the origin of Devonian large barite deposit in Zhenning-Ziyun, Guizhou, SW China. Ore Geology Reviews, (80), 18-26.
  10. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst, Russian Far East. Canadian Mineralogist, 37(5), 1117-1129.
  11. Ray, D., Banerjee, R., Balakrishnan, S., Paropkari, A.L., & Mukhopadhyay, S. (2016). S- and Sr-isotopic compositions in barite-silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid. International Journal of Earth Sciences, 106(5), 1723-1733.
  12. Yang, X., Zhang, Z., & Duan, S. (2017). Origin of the Mesoproterozoic Jingtieshan bedded barite deposit, North Qilian Mountains, NW China: Geochemical and isotope (O, S, Sr) evidence. Geological Journal, (53), 21-32.
  13. Ziegler, K.G.J. (1939). Mining and geological surveys in the Western Taurus region. 1st part. Af. T. A. Rap. No. 953 (unpublished).
  14. Striebel, H. (1965). Die Bleierz-Baryt-Lagerstaette von Karalar-Gazipasa (Turkei) und ihr geoiogischer Rahmen. PhD Thesis.
  15. Copuroglu, I. (1994). Mineralogical-petrographical studies and genesis of the Karalar (Gazipasa, Antalya) Galenite-Barite Mineralization. Maden Tetkik ve Arama Dergisi, 116(116), 1-13.
  16. Gokce, A., & Bozkaya, G. (2007). Lead and sulphur isotopic studies of the barite-galena deposits in the Karalar area (Gazipasa – Antalya), Southern Turkey. Journal of Asian Earth Sciences, 30(1), 53-62.
  17. Sadiklar, M.B. (1978). Schwerspatund Bleiglanz-Vorkommen und ihre geologisch-petrogr. Lage im Gebiet der Dorfer Kıcık, E. Guney und Seyfe (Zeytinada) bei Gazipasa-Antalya (Turkei). Antalya, Turkey: Heidelberg.
  18. Ayhan, A. (1981). Pb-Zn deposits Aydap Yulari (Gazipasa-Antalya) and the origin of the problem remobilization. MTA, 95(96), 101-112.
  19. Bozkaya, G., & Gokçe, A. (2004). Trace-and rare-earth element geochemistry of the Karalar (Gazipasa-Antalya) barite-galena deposits, southern Turkey. Turkish Journal of Earth Sciences, 13(1), 63-76.
  20. Barutoglu, O.H. (1942). Geological report of Garbi Taurus and Anamur Antalya. MTA Report (unpublished).
  21. Gökşe, A., & Bozkaya, G. (2008). Fluid inclusion and stable isotope characteristics of the Karalar (Gazipaşa, Antalya) barite-galena deposits, Southern Turkey. Geology of Ore Deposits, 50(2), 145-154.
  22. Kuscu, M., & Cengiz, O. (2001). Karbonatlı kayaçlara bagli orta toroslar Zn-Pb cevherlesmelerinin kukurt izotoplari incelemesi. Geological Bulletin of Turkey, 44(3), 59-73.
  23. Gokce, A., & Bozkaya, G. (2003). Geology and fluid inclusion characteristics of the Karalar (Gazipaşa, Antalya) barite-galena deposits. Geol Bull Turk, (46), 1-16.
  24. Ozgul, N. (1984). Alanya tectonic window and geology of its western part. Ketin Symposium, (20), 21.
  25. Tas, A. (2009). Genesis investigation of Barite deposits in Eastern Toros mountain (Adana-Feke). Cukurova University Institute of Science and Technology Geological Engineering Departmente Doctorate Thesis.
  26. Ulu, U. (1983). Geological investigation in the Sugozu-Gazipasa, Antalya. Bulletin of Geological Engineering of Turkey, (16), 3-8.
  27. Bozkaya, Ö., & Yalçın, H. (2005). Diagenesis and very low-grade metamorphism of the Antalya unit: mineralogical evidence of Triassic rifting, Alanya-Gazipaşa, central Taurus belt, Turkey. Journal of Asian Earth Sciences, 25(1), 109-119.
  28. Robertson, A.H.F., & Woodcock, N.H. (1981). Gödene Zone, Antalya Complex: Volcanism and sedimentation along a Mesozoic continental margin, S.W. Turkey. Geologische Rundschau, 70(3), 1177-1214.
  29. Robertson, A.H.F. (2000). Mesozoic-tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in Southern Turkey. Geological Society, London, Special Publications, 173(1), 97-138
  30. Karakaya, M. (2009). Using of stable isotope in geology. Engineering Project Report. Ankara, Turkey.
  31. Ayan, M. (1979). Dunyada barit ve gelecegi. Jeoloji Muhendisligi Dergisi, 3(1), 47-64.
  32. Ozdogan, A.T., Uras, Y., & Oner, F. (2017). Geochemistry of the barite deposits near Adana-Feke area (Eastern Taurides). Russian Geology and Geophysics, 58(11), 1349-1365.
  33. De Brodtkorb, M.K., Schalamuk, I.B.A., & Ametrano, S. (1989). Barite and celestite Stratabound ore fields in Argentina. Nonmetalliferous Stratabound Ore Fields, 41-68.
  34. Marumo, K. (1989). The barite ore fields of Kuroko-type of Japan. Nonmetalliferous Stratabound Ore Fields, 201-231.
  35. Cengiz, O., & Kuscu, M. (2002). Geochemical characteristics and origin of barite deposit between Sarkikaraagac (Isparta) and Huyuk (Konya). MTA Report, (123-124), 67-89.
  36. Cengiz, O., & Ucurum, A. (2012). Geological-mineralogical characteristics and trace element contents of barite, sulfide- bearing barite and Pb-Zn mineralizations (Antalya and Mersin Areas, Central Taurides-Turkey). 65th Geological Congress of Turkey Abstract Book, 408-411.
  37. Kuscu, M., & Abdullah, S. (2017). Golbası (Isparta) damar tipi epitermal as cevherlesmesinin iz element ve kararli izotop jeokimyasi ozelliklerinin incelenmesi. Suleyman Demirel Universitesi Fen Bilimleri Enstitusu Dergisi, 21(3), 873-885.
  38. Sadiklar, M.B., & Amstutz, G.C. (1981). Kıcık, Endiseguney and Seyfe (barite-galenite occurrences connected to the plate in the region Gazipasa/Antalya-Turkiye). MTA Journal, (95-96), 114-123.

Лицензия Creative Commons