Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Identifying sources of coal spontaneous heating in mine workings using aerogas control automatic systems

Yuriy Gamiy1, Viktor Kostenko2, Olena Zavialova2, Tetiana Kostenko3, Dmytro Zhurbynskyi3

1The Public Militarized Mine-Rescue Service, Myrnohrad, 85323, Ukraine

2Donetsk National Technical University, Pokrovsk, 85300, Ukraine

3Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine, Cherkasy, 18034, Ukraine


Min. miner. depos. 2020, 14(1):120-127


https://doi.org/10.33271/mining14.01.120

Full text (PDF)


      ABSTRACT

      Purpose. Substantiation of the possibility for expanding the modern Aerogas Control (AGC) systems functions when using them to identify the processes of spontaneous heating, spontaneous ignition of coal and gas contamination at the mining site of the coal mine.

      Methods. This paper presents the dynamics study of selecting 15 air distribution gas samples from the specified places, using the MATLAB system and Simulink extension packages. Gas samples have been selected in the 14th southern longwall face of block No.10 at Mining Administration “Pokrovske” during March 23-27, 2019, where an emergency situation related to gas contamination occurred on March 15, 2019.

      Findings. The experimental data has been processed on the carbon monoxide emission in mine workings of the extraction area, longwall face, technological pipelines, and on air distribution. A carbon monoxide increase in mine workings has been determined from 0.0000-0.0002% in the air jet, incoming the site, to 0.0001-0.0003% in the jet, outcoming from the site. Moreover, maximal invasion of carbon monoxide to the stope mine working occurred during operations of breaking and transporting coal within the extraction area, and when these activities were stopped and there was no fresh beaten material, the invasion of carbon monoxide was reduced to the background content level. It has been proved that improvement of the existing AGC systems by adding the sensors for measuring tracer gases and airflow rate, as well as the “artificial intelligence” to information processing units, will make possible to determine absolute and relative readings for sources identification of spontaneous coal heating at early stages.

      Originality.For the seam d4 conditions, the nature and peculiarities have been revealed of the carbon monoxide emission and the effects of ventilation during extraction operations at the mining site, while previous known studies were devoted to the carbon monoxide emission from the seams k5, l1, m42 with a change in the granulometric composition.

      Practical implications. Constant monitoring of aerological threats will make it possible to take appropriate measures for limiting the ventilation and gas hazards effects, the danger of endogenous fires.

      Keywords: AGC systems, spontaneous heating and spontaneous ignition of coal, extraction area, endogenous fire


      REFERENCES

  1. Mohalik, N.K., Khan, A.M., Kumar, A., Ray, S.K., Mishra, D., Varma, N.K., & Sahay, N. (2019). Optimization of ventilation system for prevention of spontaneous heating/fire during extraction of thick coal seam – A CFD approach. Journal of Mines, Metals and Fuels, 67(10), 452-460.
  2. Brodny, J., & Tutak, M. (2018). Determination of the zone with a particularly high risk of endogenous fires in the goaves of a longwall with caving. Journal of Applied Fluid Mechanics, 11(3), 545-553. https://doi.org/10.29252/jafm.11.03.27240
  3. Ciesielczuk, J., Janeczek, J., & Cebulak, S. (2013). The cause and progress of the endogenous coal fire in the remediated landfill in the city of katowice. Przeglad Geologiczny, 61(12), 764-772.
  4. Filatov, Y.M., Igishev, V.G., Shlapakov, P.A., Shiryaev, S.N., & Shlapakov, E.A. (2018). New regulatory framework for endogenous fires problems in coal mines. Ugol', (2), 67-70. https://doi.org/10.18796/0041-5790-2018-2-67-70
  5. Stracher, G.B., Praksh, A., & Sokol, E.V. (2015). Coal and peat fires, A Global Perspective. Case studies – Coal fires. Amsterdam, The Netherlands: Elsevier.
  6. Trenczek, S. (2014). Charakterystyka zagrożeń naturalnych (Characteristics of natural hazards). Monitorowanie, telemetria i narzędzia informatyczne w górnictwie dla poprawy bezpieczeństwa pracy – wybrane zagadnienia (Monitoring, telemetry and IT tools in mining to improve work safety – selected issues). Katowice, Poland: Wydawnictwo ITI EMAG.
  7. Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.
  8. KD 12.01.401-96. (1997). Endohenni pozhezhi na vuhilnykh shakhtakh Donbasu. Poperedzhennia i hasinnia. Donetsk: NDIHS NVO Respirator.
  9. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30.
  10. Gamiy, Y., Liashok, Y., Kostenko, V., Zavialova, O., & Kostenko, T. (2019). Applying European approach to predict coal self-heating in Ukrainian mines. Mining of Mineral Deposits, 13(1), 86-94. https://doi.org/10.33271/mining13.01.086
  11. Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.
  12. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-36
  13. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5). 26-32.
  14. Bondarenko, V., Symanovych, G., Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  15. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47.https://doi.org/10.1016/j.jsm.2018.03.004
  16. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5). 21-29
  17. Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. Scientific GeoConference Surveying Geology and Mining Ecology Management, 3-10. https://doi.org/10.5593/sgem2016/b22/s09.001
  18. Feng, X., & Adamus, A. (2014). Overview of research and use of indicator gases of coal spontaneous combustion in China / Přehled Výzkumu a Využití Indikačních Plynů Samovznícení Uhlí V Číně. GeoScience Engineering, 60(1), 55-65. https://doi.org/10.2478/gse-2014-0006
  19. Zhu, H., Chang, M., & Wang, H. (2017). Study on primal CO gas generation and emission of coal seam. International Journal of Mining Science and Technology, 27(6), 973-979.https://doi.org/10.1016/j.ijmst.2017.06.002
  20. Trenchek, S. (2017). Assessment of methane and spontaneous fire hazards level in the areas ventilated by refreshment of returned air in light of the applicable regulations. Katowice, (10), 21-28.
  21. Krzystanek, Z., Mróz, J., & Trenczek, S. (2016). Integrated system for monitoring and analysis of methane hazards in the longwall area. Mining – Informatics, Automation and Electrical Engineering, 1(525), 21-32.
  22. Zubicek, V. (2015). Selected methods for determining susceptibility to spontaneous combustion of coal mass in The Czech Republic and foreign countries. Kosice, Slovakia.
  23. Šofranko, M. (2014). Methodology of risk analysis of endogenous fire in coal mines. Advanced Materials Research, (962-965), 1153-1157. https://doi.org/10.4028/www.scientific.net/amr.962-965.1153
  24. Cierpisz, S., Miśkiewicz, K., & Wojaczek, A. (2007). Systemy gazometryczne w górnictwie (Gas measurement systems in mining). Gliwice, Poland: Wydawnictwo Politechniki Śląskiej.
  25. Gillies, A.D.S, Wu, H.W., Tuffs, N., & Sartor, T. (2004). Development of a real time airflow monitoring and control system. Proceedings of the 10th US/North American Mine Ventilation Symposium, 1-8.
  26. Trenczek, S., & Wojtas, P. (2014). Rozwój monitorowania zagrożeń naturalnych w okresie ostatniego 20-lecia (Development in natural hazards monitoring during the last 20 years). Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, (9), 3-10.
  27. Wasilewski, S. (2010). Automatic gas measurement. Innowacje dla gospodarki (Innovations for the economy). Katowice, Poland: Wydawnictwo ITI EMAG.
  28. Dixon, W.D. (1992). A statistical analysis of monitored data for methane prediction. Extended Abstract of PhD Dissertation. Nottingham, United Kingdom: University of Nottingham.
  29. Noack, K. (1998). Control of gas emissions in underground coal mines. International Journal of Coal Geology, 35(1-4), 57-82. https://doi.org/10.1016/s0166-5162(97)00008-6
  30. Sikora, M., Krzystanek, Z., Bojko, B., & Śpiechowicz, K. (2011). Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings. Journal of Mining Science, 47(4), 493-505. https://doi.org/10.1134/s1062739147040125
  31. Kerivnytstvo z proektuvannia ventyliatsii vuhilnykh shakht. (1994). Kyiv, Ukraina: Osnova.
  32. Diakonov, V.P. (2002). Matlab 6/6.1/6.5 + Simulink 4/5. Osnovy zastosuvannia. Povne kerivnytstvo korystuvacha. Kyiv, Ukraina: Solon-Press.
  33. Hamii, Yu. (2019). Obhruntuvannia kontroliu hazovydilennia oksydu vuhletsiu na prykladi 11 pivdennoi lavy bloka #10. In Forum Hirnykiv (pp. 273-283). Dnipro, Ukraina: Zhurfond.

Лицензия Creative Commons