Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Adaptive control of drilling by identifying parameters of object model under nonstationarity conditions

Volodymyr Morkun1, Nataliia Morkun1, Vitalii Tron1, Dmytro Paraniuk2,Tetiana Sulyma1

1Kryvyi Rih National University, Kryvyi Rih, 50027, Ukraine

2PJSC “ArcelorMittal Kryvyi Rih”, Kryvyi Rih, 50095, Ukraine


Min. miner. depos. 2020, 14(1):100-106


https://doi.org/10.33271/mining14.01.100

Full text (PDF)


      ABSTRACT

      Purpose. The research is intended to investigate and synthesize adaptive control over drilling by identifying parameters of an object model under non-stationarity conditions.

      Methods. Under conditions of rapidly changing borehole drilling indices, a two-level adaptive control strategy is applied, combining investigation of drilling and its control. The structure of the control system includes an additional block of forming the model on the basis of data on indirect features.

      Findings. The research develops a method for seeking the extremum developed for the object whose dynamics is described by a first-order linear differential equation. The method allows to determine the value of the output signal by evaluating the initial phase of the transient process caused by the changed input signal for a set step.

      Originality.The suggested algorithm of noise-free identification makes it possible to assess the factor of the control object transfer under the action of random disturbances. The data obtained is used to adjust the gain factor of the controller in the closed loop automatic control system of drilling.

      Practical implications. The suggested structure and algorithm of drilling control allow enhancing drilling efficiency by ensuring relevant mechanical drilling rates through defining corresponding rotation speeds and axial loads of a drilling tool.

      Keywords: adaptive control, drilling, non-stationarity, identification, model


      REFERENCES

  1. Maldynova, A., Osmanov, Z., & Galiyev, D. (2018). Formation of marketing strategy for promoting an innovative product. Journal of Applied Economic Sciences, 13(7), 1951-1958.
  2. Mustafin, S.A., Duisen, G.M., Zeinullin, A.A., Korobova, E.V. (2019). Evaluation of the choice of borrower rating groups. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(438). https://doi.org/10.32014/2019.2518-170X.166
  3. Segui, J.B., & Higgins, M. (2002). Blast design using measurement while drilling parameters. Fragblast, 6(3-4), 287-299. https://doi.org/10.1076/frag.6.3.287.14052
  4. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1), 61-67.
  5. Golik, V., Komashchenko, V., Morkun, V., & Burdzieva, O. (2017). Experience of metal deposits combined development for South African enterprises. Mining of Mineral Deposits, 11(2), 68-78. https://doi.org/10.15407/mining11.02.068
  6. Rakishev, B. R., & Galiev, D. A. (2015). Optimization of the ore flow quality characteristics in the quarry in road-rail transport. Metallurgical and Mining Industry, 7(4), 356-362.
  7. Morkun, V.S., Morkun, N.V., & Tron, V.V. (2017). Automatic control of the ore suspension solid phase parameters using high-energy ultrasound. Radio Electronics, Computer Science, Control, 0(3), 175-182. https://doi.org/10.15588/1607-3274-2017-3-19
  8. Stupnik, M.I., Kalinichenko, V.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2018). Determining the qualitative composition of the equivalent material for simulation of Kryvyi Rih iron ore basin rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 21-27. https://doi.org/10.29202/nvngu/2018-4/4
  9. Schunnesson, H. (1998). Rock characterisation using percussive drilling. International Journal of Rock Mechanics and Mining Sciences, 35(6), 711-725. https://doi.org/10.1016/s0148-9062(97)00332-x
  10. Abisheva, Z.S., Bochevskaya, E.G., Zagorodnyaya, A.N., Shabanova, T.A., & Karshigina, Z.B. (2013). Technology of phosphorus slag processing for preparation of precipitated silica. Theoretical Foundations of Chemical Engineering, 47(4), 428-434. https://doi.org/10.1134/s0040579513040027
  11. Golik, V., Hasheva, Z., & Galachieva, S. (2015). Diversification of the economic foundations of depressive mining region. The Social Sciences (Pakistan), 10(6), 746 749.
  12. Fedko, M., Kolosov, V., Pismennyi, S., & Kalinichenko, Ye. (2014). Economic aspects of change-over to TNT-free explosives for the purposes of ore underground mining in Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-84.
  13. Abisheva, Z.S., Blaida, I.A., Ponomareva, E.I., & Rozen, A.M. (1995). Effect of amine structure on gallium extraction from hydrochloric acid solutions. Hydrometallurgy, 37(3), 393-399. https://doi.org/10.1016/0304-386x(94)00016-v
  14. Golik, V., Razorenov, Y., & Polukhin, O. (2015). Metal extraction from ore benefication codas by means of lixiviation in a disintegrator. International Journal of Applied Engineering Research, 10(17), 38105-38109.
  15. Stupnik, N., Fedko, M., Pismenniy, S., & Kolosov, V. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise SkhidHZK. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-25.
  16. Golik, V.I., Rasorenov, Y.I., & Efremenkov, A.B. (2014). Recycling of metal ore mill tailings. Applied Mechanics and Materials, (682), 363-368. https://doi.org/10.4028/www.scientific.net/amm.682.363
  17. Yegupov, N. (2001). Metody robastnogo, neyro-nechetkogo i adaptivnogo upravleniya. Moskva, Rossiya: MGTU im. N.E. Baumana.
  18. Tkachov, V., Bublikov, A., & Isakova, M. (2013). Control automation of shearers in terms of auger gumming criterion. Energy Efficiency Improvement of Geotechnical Systems, 137-144. https://doi.org/10.1201/b16355-19
  19. Sudakov, A., Dreus, A., Sudakova, D., & Khamininch, O. (2018). The study of melting process of the new plugging material at thermomechanical isolation technology of permeable horizons of mine opening. E3S Web of Conferences, (60), 00027. https://doi.org/10.1051/e3sconf/20186000027
  20. Tkachov, V., Bublikov, A., & Gruhler, G. (2015). Automated stabilization of loading capacity of coal shearer screw with controlled cutting drive. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 465-477. https://doi.org/10.1201/b19901-82
  21. Khramenkov, V. (2011). Avtomatizatsiya proizvodstvennykh protsessov. Tomsk, Rossiya: Tomskiy politekhnicheskiy universitet.
  22. Kozlovskiy, Ye. (1975). Optimizatsiya protsessa razvedochnogo bureniya. Moskva, Rossiya: Nedra.
  23. Kumar, R., Kumaraswamidhas, L.A., Murthy, V.M.S., & Vettivel, S. (2019). Experimental investigations on machine vibration in blast-hole drills and optimization of operating parameters. Measurement, (145), 803-819. https://doi.org/10.1016/j.measurement.2019.05.069
  24. Pysmennyi, S., Brovko, D., Shwager, N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complex-structure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1(95)), 33-45. https://doi.org/10.15587/1729-4061.2018.142483
  25. Scoble, M.J., Peck, J., & Hendricks, C. (1989). Correlation between rotary drill performance parameters and borehole geophysical logging. Mining Science and Technology, 8(3), 301-312. https://doi.org/10.1016/s0167-9031(89)90448-9
  26. Morkun, V., Tron, V., & Paranyuk, D. (2017). Neuro-fuzzy identification of drilling control system adapted to rock types. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), 12-15. https://doi.org/10.1109/ysf.2017.8126584
  27. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, (56), 340-343. https://doi.org/10.1016/j.ultras.2014.08.022
  28. Shubladze, A., Gulyayev, S., Tsaguriya, H., Morkun, V., & Khorol’skiy, V. (1981). Zashchishchennyy algoritm identifikatsii dlya adaptivnykh sistem upravleniya tekhnologicheskimi protsessami. Izvestiya VUZov. Gornyy Zhurnal, (2), 121-129.
  29. Daneshvar, M., Mohammadi-Ivatloo, B., & Zare, K. (2020). Two-stage optimal robust scheduling of hybrid energy system considering the demand response programs. Journal of Cleaner Production, (248), 119267. https://doi.org/10.1016/j.jclepro.2019.119267
  30. Yue, Z.Q., Lee, C.F., Law, K.T., & Tham, L.G. (2004). Automatic monitoring of rotary-percussive drilling for ground characterization – illustrated by a case example in Hong Kong. International Journal of Rock Mechanics and Mining Sciences, 41(4), 573-612. https://doi.org/10.1016/j.ijrmms.2003.12.151
  31. Schunnesson, H., & Holme, K. (2015). Drill monitoring for geological mine planning in the Viscaria copper mine, Sweden. CIM Bulletin, 90(1030), 82-89.
  32. Sheputis, A. (1966). Obobshcheniye odnoy teoremy Kramera. Litov Matematicheskiy Sbornik, 6(4), 640-641.
  33. Gao, Z.-M., He, Y., & Wu, M. (2019). Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov-Krasovskii functional. Applied Mathematics and Computation, (349), 258-269. https://doi.org/10.1016/j.amc.2018.12.026
  34. Rastrigin, L., & Madzharov, N. (1977). Vvedeniye v identifikatsiyu ob’yektov upravleniya. Moskva, Rossiya: Energiya.
  35. Morkun, V., Morkun, N., & Pikilnyak, A. (2017). Ultrasonic facilities complex for grinding and ore classification process control. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), 409-413. https://doi.org/10.1109/elnano.2017.7939788
  36. Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the inch algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409. https://doi.org/10.1016/s0020-7462(96)00047-9
  37. Kovalev, A.M., Martynyuk, A.A., Boichuk, O.A., Mazko, A.G., Petryshyn, R.I., Slyusarchuk, V.Y., & Slyn’ko, V.I. (2009). Novel qualitative methods of nonlinear mechanics and their application to the analysis of multifrequency oscillations, stability, and control problems. Nonlinear Dynamics and Systems Theory, 9(2), 117-145.
  38. Slyusarchuk, V.E. (1983). Exponential dichotomy for solutions of discrete systems. Ukrainian Mathematical Journal, 35(1), 98-103. https://doi.org/10.1007/bf01093176
  39. Aref’yev, B. (1969). Optimizatsiya inertsionnykh protsessov. Leningrad, Rossiya: Mashinostroyeniye.
  40. Gu, D-K., & Zhang, D-W. (2020). Parametric control to second-order linear time-varying systems based on dynamic compensator and multi-objective optimization. Applied Mathematics and Computation, (365), 124681.
  41. Zaghdoudi, M., & Jammazi, C. (2017). On the partial rational stabilizability of nonlinear systems by optimal feedback control: Examples. IFAC-PapersOnLine, 50(1), 4051-4056. https://doi.org/10.1016/j.ifacol.2017.08.725
  42. Haber, R.E., del Toro, R. M., & Gajate, A. (2010). Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process. Information Sciences, 180(14), 2777-2792. https://doi.org/10.1016/j.ins.2010.03.030
  43. Beattie, N. (2012). Monitoring-while-drilling for open-pit mining in a hard rock environment. Master’s thesis. Kingston, Canada: Queen’s University.
  44. Galiev, S.Z., Galiev, D.A., Seitaev, E.N., & Uteshov, E.T. (2019). Unified methodology for management of a geotechnological complex in open pit mining. Gornyi Zhurnal, 2019(12), 70-75. https://doi.org/10.17580/gzh.2019.12.15
  45. Chinayev, P. (1969). Samonastraivayushchiyesya sistemy. Kyiv, Ukraina: Naukova dumka.
  46. Ballesteros-Escamilla, M., Chairez, I., Boltyanski, V.G., & Poznyak, A. (2018). Realization of robust optimal control by dynamic neural-programming. IFAC-PapersOnLine, 51(13), 468-473. https://doi.org/10.1016/j.ifacol.2018.07.322
  47. Martin, J. (2013). Application of pattern recognition techniques to monitoring-while-drilling on a rotary electric blast hole drill at an open-pit coal mine. Master’s thesis. Kingston, Canada: Queen’s University.
  48. Pan, X. (2012). Optimization of mineral processing plant through ROM ore size. AGH Journal of Mining and Geoengineering, 36(4), 123-132.

Лицензия Creative Commons