Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Phenomena of stability of the coal seam roof with a yielding support

S. Podkopaiev1, V. Gogo2, I. Yefremov1, O. Kipko1, I. Iordanov3, Yu. Simonova1

1Donetsk National Technical University, Pokrovsk, Ukraine

2Industrial Institute of Donetsk National Technical University, Pokrovsk, Ukraine

3LLC “TETZ-INVEST”, Kostiantynivka, Ukraine


Min. miner. depos. 2019, 13(4):28-41


https://doi.org/10.33271/mining13.04.028

Full text (PDF)


      ABSTRACT

      Purpose. Determining the conditions and parameters for ensuring the stability of the coal seam roof with a yielding support in the area adjacent to face and behind it under the influence of dynamic loads based on the analytical and laboratory studies.

      Methods. To achieve the purpose set, analytical studies have been carried out using the basic principles of the theory of elasticity and vibrations, the hypothesis of girders and the hinged-block displacement of the stratified rock stratum. Also, the laboratory studies of models from equivalent materials have been performed, in which the coal seam roof is presented in the form of a girder having a yielding support with variable rigidity from the filling material under dynamic load.

      Findings. As a result of performed studies, the phenomenon has been determined that the condition for the stability of the coal seam roof is a geometric parameter that reflects moving of the girder with a yielding support, under the force impact of a falling load with a known mass and the physical-geometrical characteristics of the deformable system. It has been determined that as a result of a change in the spans length, a change in the flexural rigidity of the girder occurs, which means that the yield influence of the same supports on the stability of the coal seam roof is different. The values have been set and the relationship has been studied of the physical-mechanical characteristics of the filling mass as a yielding support.

      Originality.It has been proven scientifically that the stress-strain state (SSS) of a system in which the coal seam roof is studied as a girder depends on the physical-geometrical characteristics of the system, as well as the type and place of applying the external load, in case when the law of the girder movement in time is determined.

      Practical implications. The effective supporting of the undermined rock stratum in the working part of the longwall face and behind the face is achieved by placing the yielding supports in the mined-out space or by using the backfill in the mined-out space while conducting the stope operations, thus, increasing the efficiency of measures to protect the labour of miners in coal mines.

      Keywords: roof stability, coal seam, stope face, phenomenon, stress-strain state, theory of elasticity and vibrations, modelling on equivalent materials


      REFERENCES

Akimov, V.A. (2010). Teoreticheskaya mekhanika. Dinamika material’noy tochki. Minsk, Belorussiya: Novoye znaniye.

Baruh, H. (2015) Applied dynamics. London, United Kingdom: CRC Press, Taylor & Francis Group.
https://doi.org/10.1201/b17897

Belyayev, N.M. (1985). Soprotivlenie materialov. Moskva, Rossiya: Nauka.

Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. (2014). London, United Kingdom: CRC Press, Taylor & Francis Group.
https://doi.org/10.1201/b17547

Borisov, A.A. (1980). Mekhanika gornykh porod i massivov. Moskva, Rossiya: Nedra.

Borshch-Komponiyets, V.I. (2013). Prakticheskaya mekhanika gornykh porod. Moskva, Rossiya: Izdatel’stvo “Gornaya Kniga”.

Bottega, W.J. (2006). Engineering vibrations. London, United Kingdom: CRC Press, Taylor & Francis Group.
https://doi.org/10.1201/9781420020090

Bridzhmen, P.V. (2001). Analiz razmernostey. Izhevsk, Rossiya: NITS “Regulyarnaya i khaoticheskaya dinamika”.

DSTU EN196-1:2007. (2007). Natsional’nyy standart Ukrayiny. Metody vyprobuvannya tsementu. Chastyna 1. Vyznachennya mitsnosti. Kyiv, Ukraina: Minbud Ukrainy.

Ebrahimi, F. (2011). Advances in vibration analysis research. London, United Kingdom: IntechOpen Limited.
https://doi.org/10.5772/639

Ginsberg, I. (2008). Engineering dynamics. Cambridge, United Kingdom: Cambridge University Press.
https://doi.org/10.1017/cbo9780511805899

Gusev, A.F., & Novoselova, M.V. (2017). Prikladnaya teoriya kolebaniy. Tver’, Rossiya: Tverskoy gosudarstvennyy universitet.

Havrysh, M.M., & Hrebonkina, S.S. (2004). Mekhanika hirskykh porid. Donetsk, Ukraina: DonNTU.

Iordanov, I., Simonova, Y., Petrenko, A., Polozhiy, A., Podkopaiev, S., Dovgal, V., & Korol, A. (2019). Research on models of stability of rocks of the roof of coal stray during dynamic loads. Bulletin of the National Technical University “KhPI”. Series: New Solutions in Modern Technologies, 0(5(1330)), 17-26.
https://doi.org/10.20998/2413-4295.2019.05.03

Kil’chevskiy, N.A. (1969). Teoriya soudareniy tverdykh tel. Kiev, Ukraina: Naukova dumka.

Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47.
https://doi.org/10.1016/j.jsm.2018.03.004

Kleeppner, D., & Kolenkow, R. (2014) An introduction to mechanics. United Kingdom: Cambridge University Press.
https://doi.org/10.1017/cbo9781139013963

Kovaleva, N.V., Rutman, Yu.L., & Davydova, G.V. (2013) Opredeleniye optimal’nykh parametrov dempfirovaniya v sistemakh seysmoizolyatsii. Inzhenerno-Stroitel’nyy Zhurnal. Magazine of Civil Engineering, (5), 107-115.

Kutateladze, S.S. (1982). Analiz podobiya i fizicheskiye modeli. Novosibirsk, Rossiya: Nauka.

Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409.
https://doi.org/10.1016/s0020-7462(96)00047-9

Nikolin, V.I., Podkopaev, S.V., Agafonov, A.V., & Maleev, N.V. (2005). Snizhenie travmatizma ot proyavleniy gornogo davleniya. Donetsk, Ukraina: Nord-Press.

Obiralov, A.I., Limonov, A.N., & Gavrilova, N.A. (2004). Fotogrammetriya. Moskva, Rossiya: Kolos S.

Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14-17.

Rusakov, A.I. (2003). Korrektnyy raschet privedennykh mass pri udare. Vestnik RGUPS, (2), 134-137.

Shakirzyanov, R.A., & Shakirzyanov, F.R. (2005). Dinamika i ustoychivost’ sooruzheniy. Kazan’, Rossiya: Izdatel’stvo Kazanskogo gosudarstvennogo arhitekturno-stroitelnogo universiteta.

Shashenko, A.N., Pustovoytenko, V.P., & Sdvizhkova, E.A. (2016). Geomekhanika. Kiev, Ukraina: Naukovyi druk.

Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.

Strelkov, S.P. (2005). Vvedeniye v teoriyu kolebaniy. Sankt-Peterburg, Rossiya: Izdatel’stvo “Lan’”.

Timoshenko, S.P., & Gere, Dzh. (2002). Mekhanika materialov. Sankt-Peterburg, Rossiya: Izdatel’stvovo “Lan’”.

Tsigler, F. (2002) Mekhanika tverdykh tel i zhidkostey. Izhevsk, Rossiya: NITS “Regulyarnaya i khaoticheskaya mekhanika”.

Viktorov, S.D., Iofis, M.A., & Goncharov, S.A. (2005). Sdvizhenie i razrushenie gornyh porod. Moskva, Rossiya: Nauka.

Vodop’yanov, V.I., & Belov, A.A. (2001). Issledovaniye dempfiruyushchikh svoystv materialov. Vollgograd, Rossiya: VolgGTU.

Yakobi, O. (1987). Praktika upravleniya gornym davleniem. Moskva, Rossiya: Nedra.

Zborshchik, M.P., & Podkopayev, S.V. (1992). Mekhanizm povysheniya ustoychivosti krovli v lavakh pri primenenii zakladki vyrabotannogo prostranstva. Kiev, Ukraina: Ugol’ Ukrainy.

Zhukov, V.Ye., Vystorop, V.V., & Kolchin, A.M. (1984). Malootkhodnaya tekhnologiya dobychi uglya. Kiev, Ukraina: Tekhnika.

Лицензия Creative Commons