Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Study of change in the leaching solution activity after treatment with a cavitator

E. Aben1, Zh. Markenbayev2, N. Khairullaev1, S. Myrzakhmetov1, Kh. Aben3

1Satbayev University, Almaty, Kazakhstan

2“DP “Ortalyk” LLP, Shymkent, Kazakhstan

3KAZ Minerals, Almaty, Kazakhstan


Min. miner. depos. 2019, 13(4):114-120


https://doi.org/10.33271/mining13.04.114

Full text (PDF)


      ABSTRACT

      Purpose. Increasing the valuable component content in a pregnant solution due to the activation of leaching solution with cavitation treatment in case of the borehole in-situ leaching (ISL).

      Methods. To obtain the cavitation effect, a laboratory cavitation plant has been produced. Studies on the sulphuric acid solution activation by means of cavitation were conducted using solutions with 10 g/l of acid content. Studies of changing the sulphuric acid solution activity during treatment with a cavitator were conducted for 3 minutes (24 passes through the cavitator), 5 minutes (40 passes), 10 minutes (80 passes) and 20 minutes (160 passes). The content in the solution of the valuable component was analysed using a KFK-3-“ZOMS” photoelectric photometer.

      Findings. The laboratory studies have been performed to set the influence of the cavitation process on the leaching solution activity at various degrees of activation and time of reaction. The studies have established that in order to activate the leaching solution, it is proposed to carry out cavitation treatment of sulphuric acid before to additionally fortify the mother solution, which helps to increase its activity. The solution activation leads to an increase in the valuable component content from 18 to 26% in the pregnant solution and its activity is maintained for a long time (up to 30 days).

      Originality.New dependences have been obtained reflecting the nature of changing the valuable component content in the pregnant solution on the reaction time and the degree of solution activation.

      Practical implications. The proposed activation method leads to an increase in the valuable component content in the pregnant solution compared to the basic technology, therewith, the activity is maintained for a long time. The proposed technology is characterized by low capital costs, is easily integrated into the existing system and is absolutely environmentally friendly.

      Keywords: : cavitation, activity, sulphuric acid, leaching solution, productive solution, conventional metal


      REFERENCES

Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016.
https://doi.org/10.1051/e3sconf/20186000016

Arens, V.Kh. (1986). Skvazhinnaya dobycha poleznykh iskopaemykh. Moskva, Rossiya: Nedra.

Armstrong, D., & Jeuken, B. (2009). Management of in-situ recovery (ISR) mining fluids in a closed aquifer system. Abstracts of the International Mine Water Conference, 703-712.

Barchenkov, V.V. (2016). Intensivnoe tsianirovanie graviokontsentrata na novoy ustanovke SLR kompanii Sepro Mineral Systems. Retrieved from
https://zolotodb.ru/article/11435

Ceccio, S.L. (2010). Friction drag reduction of external flows with bubble and gas injection. Annual Review of Fluid Mechanics, 42(1), 183-203.
https://doi.org/10.1146/annurev-fluid-121108-145504

Golik, V.I., & Kultyshev, V.I. (2011). Istoriya i perspektivy vyshchelachivaniya urana. Gornyy Informatsionno-Analiticheskiy Byulleten’, (7), 138-143

Hoummady, E., Golfier, F., Cathelineau, M., Truche, L., Durupt, N., Blanvillain, J.J., & Lefevre, E. (2017). A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, (171), 33-43.
https://doi.org/10.1016/j.hydromet.2017.04.011

Kalabin, A.I. (1981). Dobycha poleznykh iskopaemykh podzemnym vyshchelachivaniem i drugimi geotekhnologicheskimi metodami. Moskva, Rossiya: Atomizdat.

Kalybekov, T., Sandibekov, M., Rysbekov, K., & Zhakypbek, Y. (2019). Substantiation of ways to reclaim the space of the previously mined-out quarries for the recreational purposes. E3S Web of Conferences, (123), 01004.
https://doi.org/10.1051/e3sconf/201912301004

Karaganov, V.V., & Uzhkenova, B.S. (2002). Kuchnoe vyshchelachivanie zolota – zarubezhnyy opyt i perspektivy razvitiya. Moskva, Rossiya: Vserossiyskiy institut ekonomiki mineral’nogo syr’ya i nedropol’zovaniyam, TOO “Geointsentr”.

Kashuba, S.G., & Leskov, M.I. (2014). Kuchnoe vyshchelachivanie v rossiyskoy praktike – obzor opyta i analiz perspektiv. Zoloto i Tekhnologii, 1(23), 1-8.

Knepp, R., Deyli, Dzh., & Khemmit, F. (1974). Kavitatsiya. Moskva, Rossiya: Mir.

Koshkolda, K.N., Pimenov, M.K., & Atakulov, T. (1988). Puti intensifikatsii podzemnogo vyshchelachivaniya. Moskva, Rossiya: Energoatomnadat.

Kubota, A., Kato, H., & Yamaguchi, H. (1992). A new modelling of cavitating flows: a numerical study of un-steady cavitation on a hydrofoil section. Journal of Fluid Mechanics, 240(3), 59-96.
https://doi.org/10.1017/s002211209200003x Lauterborn, W. (1980). Optic cavitation. Journal of Physics, (41), 273-280.

Medunić, G., Mondol, D., Rađenović, A., & Nazir, S. (2018). Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13-21.
https://doi.org/10.17794/rgn.2018.3.2

Menshov, O., Kuderavets, R., Popov, S., Homenko, R., Sukhorada, A., & Chobotok, I. (2016). Thermomagnetic analyzes of soils from the hydrocarbon fields. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 73(2), 33-37.
https://doi.org/10.17721/1728-2713.79.05

Miller, D. (2007). Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Progress in Biophysics and Molecular Biology, 93(1-3), 314-330.

Petersen, J. (2016). Heap leaching as a key technology for recovery of values from low-grade ores – A brief over-view. Hydrometallurgy, (165), 206-212.
https://doi.org/10.1016/j.hydromet.2015.09.001

Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M., & Campbell, P. (2005). Membrane disruption by optically controlled microbubble cavitation. Nature Physics, 1(2), 107-110.
https://doi.org/10.1038/nphys148

Rooze, J., Rebrov, E.V., Schouten, J.C., & Keurentjes, J.T.F. (2013). Dissolved gas and ultrasonic cavitation – A review. Ultrasonics Sonochemistry, 20(1), 1-11.
https://doi.org/10.1016/j.ultsonch.2012.04.013

Sekisov, A.G., Rubtsov, Yu.I., & Lavrov, A.Yu. (2016). Aktivatsionnoe kuchnoe vyshchelachivanie dispersnogo zolota iz malosul’fidnykh rud. Zapiski Gornogo Instituta, (217), 1-232.

Shcherbakov, P., Tymchenko, S., Buhrym, O., & Klymenko, D. (2019). Research into the crushing and grinding processes of iron ore with its simultaneous effect by mechanical load and electric field of ultra-high frequency. E3S Web of Conferences, (123), 01030.
https://doi.org/10.1051/e3sconf/201912301030

Sukhodolov, A.P. (2010). Mirovye zapasy urana: perspektivy syr’yevogo obespecheniya atomnoy energetiki. Izvestiya Irkutskoy Gosudarstvennoy Ekonomicheskoy Akademii, 4(72), 166-169.

Sukhov, V., Suyarko, V., Niemets, K., & Matveyev, A. (2018). Hydrogeodynamic processes in carbonate rocks. Part II. Karst and its influence on geological environment. Visnyk of V.N. Karazin Kharkiv National University – Series Geology, Geography, Ecology, (48), 173-184.
https://doi.org/10.26565/2410-7360-2018-48-15

Tan, Q., Deng, C., & Li, J. (2016). Innovative application of mechanical activation for rare earth elements recovering: Process optimization and mechanism exploration. Scientific Reports, (6), 19961.

Vogel, A., Busch, S., & Parlitz, U. (1996). Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. The Journal of the Acoustical Society of America, 100(1), 148-165.
https://doi.org/10.1117/12.209939

Wadsworth, M., Zhu, X., Thompson, J., & Pereira, C. (2000). Gold dissolution and activation in cyanide solution: Kinetics and mechanism. Hydrometallurgy, 57(1), 1-11.
https://doi.org/10.1016/s0304-386x(00)00084-0

Ye, Y.J., Ding, D.X., Li, G.Y., Song, J.B., & Li, F. (2013). Regularities for liquid saturated seepage in uranium ore heap for heap leaching. Rock and Soil Mechanics, 34(8), 2243-2248.

Yusupov, K.A., Elzhanov, E.A., Aliev, S.B., & Dzhakupov, D.A. (2017). Application of ammonium bifluoride for chemical treatment of wells in underground uranium leaching. Gornyi Zhurnal, (4), 57-60.
https://doi.org/10.17580/gzh.2017.04.11

Zabel’skiy, V.K. (1981). Perspektivy primeneniya skvazhinnoy tekhnologii podzemnogo vyshchelachivaniya pri razrabotke mestorozhdeniy poleznykh iskopaemykh. Gornyi Zhurnal, (7), 48-52.

Лицензия Creative Commons