Risk assessment of potentially toxic elements in soil surrounding the Golesh ferronickel mine, Kosovo
Elida Lecaj1,2, Todor Serafimovski1, Musaj Paçarizi3
1Faculty of Natural and Technical Sciences, Goce Delcev University, Stip, North Macedonia
2Alma Mater Europaea Campus College “REZONANCA”, Prishtina, Kosovo
3Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Prishtina, Prishtina, Kosovo
Min. miner. depos. 2025, 19(4):139-146
https://doi.org/10.33271/mining19.04.139
Full text (PDF)
      ABSTRACT
      Purpose. The objective of this study was to assess the risk of potentially toxic elements in soil samples surrounding ferronickel mines in the Golesh massif, Republic of Kosovo.
      Methods. In total, 14 potentially toxic elements (Al, As, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, V and Zn) were investigated. Basic statistics, Pearson correlation, Principal Component Analysis (PCA), and Pollution indices (CF, PLI, Igeo, and EF) were used to explain better the data on metal concentrations in the soil samples.
      Findings. Five groups of elements were identified by PCA, based on their geogenic or anthropogenic origin. The contamination factor for nickel ranged from 6.9 to 166, with a mean value of 65.17. Cobalt and magnesium also had high mean values of contamination factor: 10.38 and 9.76, respectively. The PLIsite for 14 locations were highly polluted with metals (PLI > 4), and the PLIzone of the whole territory investigated was 3.5. The mean value of Igeo for nickel was 5.44, for cobalt (2.79) and for magnesium (2.7). The mean value of enrichment factor (EF) for nickel, cobalt and magnesium was 233.7, 35.26 and 19.16, respectively.
      Originality.Soil samples were collected from 30 different locations in accordance with the soil sampling protocol. The samples were sent for further analysis at the ACME, Ltd. laboratory in Vancouver, Canada. The soil samples were digested with aqua regia, and the content of 14 chemical elements was determined using inductively coupled plasma-mass spectrometry (ICP-MS).
      Practical implications. Based on statistical analysis and pollution indices, we concluded that most soil samples were highly polluted with Ni, Co, and Mg, resulting from the ferronickel and magnesite mines located in the region under investigation.
      Keywords: heavy metal, soil, ICP-MS, ferronickel mine, Golesh, Kosovo
      REFERENCES
- Boisa, N., Bird, G., Brewer, P.A., Dean, J.R., Entwistle, J.A., Kemp, S.J., & Macklin, M.G. (2013). Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo: The role of oral bioaccessibility and mineralogy in human PHE exposure. Environment International, 60, 56–70. https://doi.org/10.1016/j.envint.2013.07.014
- Palansooriya, K.N., Shaheen, S.M., Chen, S.S., Tsang, D.C., Ha-shimoto, Y., Hou, D., & Ok, Y.S. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134, 105046. https://doi.org/10.1016/j.envint.2019.105046
- Niu, Z., Wang, H., & Luo, Q. (2025). Pollution characteristics and ecological risks of heavy metals in soil near a Pb-Zn mine in Northeast China. Polish Journal of Environmental Studies, 34(6), 7703–7712. https://doi.org/10.15244/pjoes/194580
- Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., & Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126
- Wang, Y., Ao, L., Lei, B., & Zhang, S. (2015). Assessment of heavy metal contamination from sediment and soil in the riparian zone China’s three gorges reservoir. Polish Journal of Environmental Studies, 24(5). https://doi.org/10.15244/pjoes/44473
- Borgna, L., Di Lella, L.A., Nannoni, F., Pisani, A., Pizzetti, E., Protano, G., & Rossi, S. (2009). The high contents of lead in soils of northern Kosovo. Journal of Geochemical Exploration, 101(2), 137–146. https://doi.org/10.1016/j.gexplo.2008.05.001
- Protano, G., Di Lella, L.A., & Nannoni, F. (2021). Exploring distribution of potentially toxic elements in soil profiles to assess the geochemical background and contamination extent in soils of a metallurgical and industrial area in Kosovo. Environmental Earth Sciences, 80(15), 486. https://doi.org/10.1007/s12665-021-09771-8
- Xiao, X., Zhang, J., Wang, H., Han, X., Ma, J., Ma, Y., & Luan, H. (2020). Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Science of the Total Environment, 713, 135292. https://doi.org/10.1016/j.scitotenv.2019.135292
- Ahado, S.K., Nwaogu, C., Sarkodie, V.Y.O., & Borůvka, L. (2021). Modeling and assessing the spatial and vertical distributions of potentially toxic elements in soil and how the concentrations differ. Toxics, 9(8), 181. https://doi.org/10.3390/toxics9080181
- Adnan, M., Xiao, B., Xiao, P., Zhao, P., Li, R., & Bibi, S. (2022). Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics, 10(5), 231. https://doi.org/10.3390/toxics10050231
- Rizaj, M., Beqiri, E., McBow, I., O’Brien, E.Z., & Kongoli, F. (2008). The mineral base and productive capacities of metals and non-metals of Kosovo. JOM, 60, 18–22. https://doi.org/10.1007/s11837-008-0101-4
- Mining strategy of the Republic of Kosovo 2012–2025. (2012). Prishtina, Kosovo: Ministry of Economic Development of Republic of Kosovo.
- Hoti, A. (2014). The export potential of Kosovo’s natural resources and their impact on the Kosovo economy. Thesis. New York, United States: Rochester Institute of Technology. Retrieved from: https://repository.rit.edu/theses/8115
- Republic of Kosovo, the independent commission for mines and minerals. (2025). Retrieved from: https://www.kosovo-mining.org/
- Durmishaj, B., Hyseni, S., & Alliu, I. (2014). Chemical vertical zonality in silicate nickel deposit in Gllavica, Republic of Kosovo. Journal of Geological Resource and Engineering, 2, 94–98. https://doi.org/10.17265/2328-2193/2014.02.003
- Koliqi, A., Deva, N., & Koliqi, A. (2016). Geochemical analyses in mineral deposits “Çikatova e Vjeter” in Drenas Area – Kosovo. American Journal of Engineering Research, 5(5), 59–62.
- Dushi, M. (2017). Nickel-cobalt minerals of our country Kosova. Prishtina, Kosovo: Academy of Science and Arts.
- Dilek, Y., Furnes, H., & Shallo, M. (2007). Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research, 11(4), 453–475. https://doi.org/10.1016/j.gr.2007.01.005
- Tremblay, A., Meshi, A., Deschamps, T., Goulet, F., & Goulet, N. (2015). The Vardar zone as a suture for the Mirdita ophiolites, Albania: Constraints from the structural analysis of the Korabi-Pelagonia zone. Tectonics, 34(2), 352–375. https://doi.org/10.1002/2014TC003807
- Çadraku, H.S. (2022). Monitoring of water flow in the springs of the Golesh Massif, Kosovo. Ecological Engineering and Environmental Technology, 23(5), 109–123. https://doi.org/10.12912/27197050/151760
- Elezaj, Z. (2009). Geodynamic evolution of Kosovo during the Triassic and Jurassic. Yerbilimleri/Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi, 30(2), 113–126.
- Karamata, S., & Knežević, V. (1956). Peridotite massif of Goleš. Vesnik Zavoda Za Geološka i Geofizička Istraživanja NRS, XII, 155–164.
- Moody, J.B. (1976). Serpentinization: A review. Lithos, 9(2), 125–138. https://doi.org/10.1016/0024-4937(76)90030-X
- Fritsch, E., Balan, E., Petit, S., & Juillot, F. (2021). Structural, textural, and chemical controls on the OH stretching vibrations in serpentine-group minerals. European Journal of Mineralogy, 33(4), 447–462. https://doi.org/10.5194/ejm-33-447-2021
- Ilich, M., & Tošović, R. (1988). Geology and genesis of the Goleš vein magnesite deposit. Belegrade, Serbia.
- Fallick, A.E., Ilich, M., & Russell, M.J. (1991). A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. Economic Geology, 86(4), 847–861. https://doi.org/10.2113/gsecongeo.86.4.847
- Arias-Navarro, C., Vidojević, D., Zdruli, P., Yunta Mezquita, F., Jones, A., & Wojda, P. (2024). Soil pollution in the Western Balkans. Luxemburg, Luxemburg: Publications Office of the European Union, 73 p. https://doi.org/10.2760/21207
- Egerer, H., Peck, P., Sandei, P.C., Simonett, O., & Williams, S. (2009). Mining and environment in the Western Balkans. UN Environment Programme.
- Sheremeti-Kabashi, F., Kutllovci, F., Mangjolli, B., & Hasani, A. (2024). Investigation of heavy metal concentrations in the Kelmend tailings landfill and ecological assessment of pollution. Mining of Mineral Deposits, 18(1), 110–118. https://doi.org/10.33271/mining18.01.110
- Sadiku, M., Kadriu, S., Kelmendi, M., & Latifi, L. (2021). Impact of Artana mine on heavy metal pollution of the Marec river in Kosovo. Mining of Mineral Deposits, 15(2), 18–24. https://doi.org/10.33271/mining15.02.018
- Zogaj, M., Pacarizi, M., & Duering, R.A. (2014). Spatial distribution of heavy metals and assessment of their bioavailability in agricultural soils of Kosovo. Carpathian Journal of Earth and Environmental Sciences, 9(1), 221–230.
- Paçarizi, M., Stafilov, T., Šajn, R., Tašev, K., & Sopaj, F. (2023). Mosses as bioindicators of atmospheric deposition of Tl, Hg and As in Kosovo. Chemistry and Ecology, 39(2), 123–136. https://doi.org/10.1080/02757540.2022.2147516
- Bytyçi, P.S., Çadraku, H.S., Etemi, F.Z., Ismaili, M.A., Fetoshi, O.B., & ShalaAbazi, A.M. (2018). The assessment of surface water quality in the Lepenc River basin using water quality index (WQI) methodology. Rasayan Journal of Chemistry, 11(2), 653–660. https://doi.org/10.31788/RJC.2018.1123015
- Paçarizi, M., Qeriqi, E., Sinani, B., Tašev, K., Reka, A., & Stafilov, T. (2024). Geochemistry and mineralogy of lead-zinc mine tailings from the Artana landfill in the Republic of Kosovo. Geologica Macedonica, 38(1), 53–64. https://doi.org/10.46763/GEOL24381053p
- Dreshaj, L.E., Haskaj, A., & Paçarizi, M. (2024). Pollution indicators of heavy metals in the sediments of the Lepenc River in Kosovo. Environment Protection Engineering, 50(3), 77–87. https://doi.org/10.37190/epe240305
- Krasniqi, E., Berisha, N., Millaku, F., & Rexhepi, F. (2019). Contribution to the knowledge on the flora of Mt Golesh, central Kosovo. Natura Croatica, 28(2), 423–440. https://doi.org/10.20302/NC.2019.28.28
- Çavolli, R. (1997). Regional geography of Kosovo. Pristine, Kosovo: ETMK.
- Rexhepi, F., Millaku, F., & Krasniqi, E. (2012). Forest and shrub ecosystems on the serpentines of the Republic of Kosovo. SGE, 4(9), 9–16. https://doi.org/10.5593/sgem2012/s15.v4002
- Herrick, J.E. (2005). Monitoring manual for grassland, shrubland and savanna ecosystems. Vol. 2. USDA-ARS Jornada Experimental Range.
- Kastrati, G., Vataj, R., Sopaj, F., Tašev, K., Stafilov, T., Šajn, R., & Paçarizi, M. (2024). Distribution and statistical analysis of chemical elements in soil from the territory of the Republic of Kosovo. Soil and Sediment Contamination: An International Journal, 33(2), 195–215. https://doi.org/10.1080/15320383.2023.2192297
- Salminen, R., Batista, M.J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, T., Locutura, J., Marsina, J., Mazreku, K., O'Connor, A., Olsson, P.J., Ottesen, S.Å., Petersell, V., Plant, J.A., Reeder, S., Salpeteur, I., Siewers, U., Steenfelt, A., Tarvainen, T., & the FOREGS Geochemistry Expert Group. (2005). Geochemical Atlas of Europe. Part 1 – Background Information, Methodology and Maps. Espoo, Finland: Geological Survey of Finland. Retrieved from: http://weppi.gtk.fi/publ/foregsatlas/article.php?id=15
- Sopaj, F., Paçarizi, M., Stafilov, T., Tašev, K., & Šajn, R. (2022). Statistical analysis of atmospheric deposition of heavy metals in Kosovo using the terrestrial mosses method. Journal of Environmental Science and Health, Part A, 57(5), 335–346. https://doi.org/10.1080/10934529.2022.2063607
- Kowalska, J.B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination: A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z
- Fernández, J.A., & Carballeira, A. (2001). Evaluation of contamination, by different elements, in terrestrial mosses. Archives of Environmental Contamination and Toxicology, 40(4), 461–468. https://doi.org/10.1007/s002440010198
- Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geo Journal, 2, 108–118.
- Aliu, M., Šajn, R., & Stafilov, T. (2023). Distribution of Ag, Au, Bi, Cu, and Mo in surface soils: Case study: Mitrovica region, Republic of Kosovo. Chemistry and Ecology, 39(9), 970–990. https://doi.org/10.1080/02757540.2023.2269933
- Kastrati, G., Sopaj, F., Bytyqi, V., Stafilov, T., Šajn, R., Tašev, K., & Paçarizi, M. (2025). Presence and correlation of potentially toxic elements in honey, pollen, and soil samples in Kosovo. Journal of Environmental Science and Health, Part A, 1–9. https://doi.org/10.1080/10934529.2025.2594372
- Lecaj, E., Serafimovski, T., Balabanova, B., Paçarizi, M. (2025). Assessment of heavy metal accumulation in moss species as biomonitors of atmospheric pollution in the Golesh Fe-Ni mining area, Republic of Kosovo. Geologica Macedonica, 39(2), 127–138. https://doi.org/10.46763/GEOL25392127
- Ramadani, M., Lepitkova, S., Ismaili, V., & Paçarizi, M. (2025). Potentially toxic elements and microplastics in mosses around the industrial zone of Obiliq in the Republic of Kosovo. Ecological Engineering & Environmental Technology, 26(12), 103–112. https://doi.org/10.12912/27197050/213828
- Paçarizi, M., Stafilov, T., Šajn, R., Tašev, K., & Sopaj, F. (2021). Estimation of elements’ concentration in air in Kosovo through mosses as biomonitors. Atmosphere, 12(4), 415. https://doi.org/10.3390/atmos12040415
- Zhang, C., Qiao, Q., Piper, J.D.A., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159(10), 3057–3070. https://doi.org/10.1016/j.envpol.2011.04.006
