Variations in alumina-based material composition and heating temperature of refractory bricks in mullite formation
David Candra Birawidha1, Muhammad Amin1, Agus Miswanto2, Fery Hendi Jaya3, Sari Utama Dewi3, Mentari Kirana Nariswari4, Devi Mariska Putri4
1Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Lampung, Indonesia
2Geological Resource Research Center, National Research and Innovation Agency (BRIN), Bandung, Indonesia
3Sang Bumi Ruwa Jurai University, Lampung, Indonesia
4Universitas Lampung, Lampung, Indonesia
Min. miner. depos. 2025, 19(4):130-138
https://doi.org/10.33271/mining19.04.130
Full text (PDF)
      ABSTRACT
      Purpose. This study investigates the effects of varying alumina content and firing temperatures on the formation of mullite in refractory bricks composed of kaolin, alumina, and recycled chamotte. The goal is to develop high-performance, cost-effective refractories using local and recycled materials.
      Methods. Three formulations with different alumina proportions were prepared, pressed, and sintered at 1200 or 1300°C. Characterization was performed using XRF (chemical composition), XRD (phase analysis), FE-SEM/EDX (microstructure), and STA (thermal behavior). Mechanical properties were assessed using a UTM, and chemical resistance was evaluated by exposure to H2SO4 and NaOH solutions.
      Findings. Results show that higher alumina content and firing at 1300°C promote mullite formation, thereby improving mechanical strength, density, and resistance to thermal shock and chemical corrosion. The refractory with 35% alumina, fired at 1300°C, achieved the highest cold crushing strength (26.5 N/mm2) and bulk density (2.13 g/cm3), indicating optimal performance.
      Originality.The novelty of this work lies in the strategic use of recycled chamotte, not merely as a filler, but as a functional mullite precursor that synergizes with local kaolin to enhance sintering. This approach is concretely validated by the optimal performance of the 35% alumina composition fired at 1300°C, which achieved the highest mechanical strength and density, demonstrating a cost-effective and high-performance refractory solution from sustainable sources.
      Practical implications. The findings provide practical solutions for manufacturing high-quality refractories from sustainable, locally sourced materials, thereby reducing dependence on pure alumina and promoting environmental sustai-nability through recycling.
      Keywords: refractory brick, mullite, testing, analysis, alumina
      REFERENCES
- Yin, B., Li, Y., Wang, S., & Zheng, Y. (2023). Corrosion resistance of calcium hexaaluminate insulating firebrick for synthesising ternary lithium-ion battery cathode materials. Journal of Alloys and Compounds, 942, 168953. https://doi.org/10.1016/j.jallcom.2023.168953
- ASTM C71-12. (2018). Standard terminology relating to refractories. West Conshohocken, United States: ASTM International.
- Mouiya, M., Tessier-Doyen, N., Tamraoui, Y., Alami, J., & Huger, M. (2023). High temperature thermomechanical properties of a microcracked model refractory material: A silica-doped aluminium titanate. Ceramics International, 49(14), 24572–24580. https://doi.org/10.1016/j.ceramint.2023.01.027
- Anwar, A., Rhohman, F., & Nadliroh, K. (2020). Pengaruh perbedaan ketebalan semen alumina 4 cm dan 5 cm terhadap kemampuan menahan panas. Seminar Nasional Inovasi Dan Teknologi, 190–195.
- Gu, F., Zhang, Y., Tu, Y., Wu, X., Zhu, Y., Long, Y., & Shen, D. (2022). Assessing magnesia effect on preparing refractory materials from ferrochromium slag. Ceramics International, 48(9), 13100–13107. https://doi.org/10.1016/j.ceramint.2022.01.186
- Barandehfard, F., Aluha, J., Hekmat-Ardakan, A., & Gitzhofer, F. (2020). Improving corrosion resistance of aluminosilicate refractories towards molten Al-Mg alloy using non-wetting additives: A short review. Materials, 13(18), 4078. https://doi.org/10.3390/ma13184078
- Syukuriah, S., Hustim, M., Tjaronge, W., & Irmawaty, R. (2025). Performance evaluation of magnesia-type refractory brick waste as complete replacement for fine aggregate and filler in asphalt concrete wearing course mixtures. Engineering, Technology & Applied Science Research, 15(1), 19575–19582. https://doi.org/10.48084/etasr.9298
- Kuntaarsa, A. (2017). Perbaikan mutu bodi keramik lempung Pundong dengan penambahan pecahan kaca lampu neon bekas. Eksergi, 14(2), 62–71. https://doi.org/10.31315/e.v14i2.2149
- Daud, D. (2015). Kaolin sebagai bahan pengisi pada pembuatan kompon karet: Pengaruh ukuran dan jumlah terhadap sifat mekanik-fisik. Jurnal Dinamika Penelitian Industri, 26(1), 41–48.
- Handoko, D., & Pujarianto, P. (2024). Pengaruh komposisi pasir kuarsa terhadap sifat bata tahan api (firebrick) berbahan kaolin dan fly ash. Jurnal Mesin Nusantara, 7(1), 113–125. https://doi.org/10.29407/jmn.v7i1.21978
- El Haddar, A., Manni, A., Azdimousa, A., El Hassani, I.E.E.A., Bellil, A., Sadik, C., & El Ouahabi, M. (2020). Elaboration of a high mechanical performance refractory from halloysite and recycled alumina. Boletín de la Sociedad Española de Cerámica y Vidrio, 59(3), 95–104. https://doi.org/10.1016/j.bsecv.2019.08.002
- Amin, M., Suryana, Y.I., Isnugroho, K., Aji, B.B., Birawidha, D.C., & Hendronursito, Y. (2018). Characterization of refractory brick based on local raw material from Lampung Province – Indonesia. AIP Conference Proceedings, 1945(1), 020047. https://doi.org/10.1063/1.5030269
- ASTM C113-14. (2019). Standard test method for reheat change of refractory brick. West Conshohocken, United States: ASTM International.
- Sawadogo, M., Seynou, M., Zerbo, L., Sorgho, B., Laure Lecomte-Nana, G., Blanchart, P., & Ouédraogo, R. (2020). Formulation of clay refractory bricks: Influence of the nature of chamotte and the alumina content in the clay. Advances in Materials, 9(4), 59–67. https://doi.org/10.11648/j.am.20200904.11
- Chargui, F., Hamidouche, M., Belhouchet, H., Jorand, Y., Doufnoune, R., & Fantozzi, G. (2018). Mullite fabrication from natural kaolin and aluminium slag. Boletín de la Sociedad Española de Cerámica y Vidrio, 57(4), 169–177. https://doi.org/10.1016/j.bsecv.2018.01.001
- Liu, Z., Lian, W., Liu, Y., Zhu, J., Xue, C., Yang, Z., & Lin, X. (2021). Phase formation, microstructure development, and mechanical properties of kaolin-based mullite ceramics added with Fe2O3. International Journal of Applied Ceramic Technology, 18(3), 1074–1081. https://doi.org/10.1111/ijac.13720
- Luz, A.P., Gagliarde, J.H., Aneziris, C.G., & Pandolfelli, V.C. (2017). B4C mineralizing role for mullite generation in Al2O3-SiO2 refractory castables. Ceramics International, 43(15), 12167–12178. https://doi.org/10.1016/j.ceramint.2017.06.075
- Kotrbová, L., Uhlířová, T., Pabst, W., Hubálková, J., & Kotouček, M. (2025). Thermal conductivity of silica refractories and its temperature dependence during thermal cycling, compared to silicite and sandstone. Open Ceramics, 21, 100735. https://doi.org/10.1016/j.oceram.2025.100735
- Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., Sheplev, V.S., & Kolobov, V.Y. (2019). The nature and models of metamorphism. Springer International Publishing.
- Bella, M.L., Hamidouche, M., & Gremillard, L. (2021). Preparation of mullite-alumina composite by reaction sintering between Algerian kaolin and amorphous aluminum hydroxide. Ceramics International, 47(11), 16208–16220. https://doi.org/10.1016/j.ceramint.2021.02.199
- Wesolowski, M., & Leyk, E. (2023). Coupled and simultaneous thermal analysis techniques in the study of pharmaceuticals. Pharmaceutics, 15(6), 1596. https://doi.org/10.3390/pharmaceutics15061596
- Yue, X., Li, Y., Li, H., Ma, C., & Zhang, X. (2022). Phase evolution of a novel silicon-alumina-fused mullite-containing Ti2O3 refractory at 1300°C in N2. Ceramics International, 48(21), 31686–31694. https://doi.org/10.1016/j.ceramint.2022.07.090
- Guo, D., Li, X., Chen, P., Zhu, B., & Fang, B. (2016). Microstructure evolution and its effect on thermo-mechanical properties of low-carbon Al2O3-C refractories. Ceramics International, 42(16), 19071–19078. https://doi.org/10.1016/j.ceramint.2016.09.066
- Peng, Z., Sun, W., Xiong, X., Zhang, H., Guo, F., & Li, J. (2021). Novel refractory high-entropy ceramics: Transition metal carbonitrides with superior ablation resistance. Corrosion Science, 184, 109359. https://doi.org/10.1016/j.corsci.2021.109359
- Weidner, A., Ranglack-Klemm, Y., Zienert, T., Aneziris, C.G., & Biermann, H. (2019). Mechanical high-temperature properties and damage behavior of coarse-grained alumina refractory metal composites. Materials, 12(23), 3927. https://doi.org/10.3390/ma12233927
- Díaz-Tato, L., Lopez-Perales, J.F., Contreras, J.E., Banda-Muñoz, F., Suárez-Suárez, D., González-Carranza, Y., & Rodríguez, E.A. (2022). Hydration resistance and mechano-physical properties improvement of a magnesia-dolomite dense refractory by hercynite spinel. Materials Chemistry and Physics, 287, 126314. https://doi.org/10.1016/j.matchemphys.2022.126314
- Michel, R., Ammar, M.R., Poirier, J., & Simon, P. (2013). Phase transformation characterization of olivine subjected to high temperature in air. Ceramics International, 39(5), 5287–5294. https://doi.org/10.1016/j.ceramint.2012.12.031
- ASTM C134-95. (2023). Standard test methods for size, dimensional measurements, and bulk density of refractory brick and insulating firebrick. West Conshohocken, United States: ASTM International.
- Chen, Z., Yan, W., Schaffoener, S., Zhi, J., & Li, N. (2022). High-strength microporous corundum-mullite refractory aggregates with sub-micron pores using vacuum impregnation treatment. Journal of Materials Research and Technology, 19, 3433–3442. https://doi.org/10.1016/j.jmrt.2022.06.091
- Tiegoum Wembe, J., Mambou Ngueyep, L.L., Tchognia Nkuissi, H.J., Tchedele Langollo, Y., Tchioffo Tiwa, I.C., Pliya, P., & Ndjaka, J.M.B. (2024). Mineralogical, chemical and physico-mechanical properties of fired bricks for refractory industry applications. Discover Soil, 1(1), 5. https://doi.org/10.1007/s44378-024-00005-4
- Samad, A., Baidya, S., Akhtar, U.S., Ahmed, K.S., Roy, S.C., & Islam, S. (2021). Manufacture of refractory brick from locally available red clay blended with white Portland cement and its performance evaluation. GEOMATE Journal, 20(80), 105–112. https://doi.org/10.21660/2021.80.j2033
- Huang, L., Pan, Y., Zhang, J., Du, Y., Zhang, Y., & Zhang, S. (2021). Densification, grain growth mechanism and mechanical properties of Mo10Nb refractory targets fabricated by SPS. International Journal of Refractory Metals and Hard Materials, 99, 105575. https://doi.org/10.1016/j.ijrmhm.2021.105575
- Coppola, B., Tardivat, C., Richaud, S., Tulliani, J.M., Montanaro, L., & Palmero, P. (2020). Alkali-activated refractory wastes exposed to high temperatures: Development and characterization. Journal of the European Ceramic Society, 40(8), 3314–3326. https://doi.org/10.1016/j.jeurceramsoc.2020.02.052
- Hossain, S.S., & Roy, P.K. (2019). Fabrication of sustainable insulation refractory: Utilization of different wastes. Boletín de la Sociedad Española de Cerámica y Vidrio, 58(3), 115–125. https://doi.org/10.1016/j.bsecv.2018.09.002
- Valenzuela-Gutierrez, A., Lopez-Cuevas, J., Gonzalez-Angeles, A., & Pilalua-Díaz, N. (2019). Addition of ceramics materials to improve the corrosion resistance of alumina refractories. SN Applied Sciences, 1(7), 784. https://doi.org/10.1007/s42452-019-0789-5
- Weinberg, A.V., Varona, C., Chaucherie, X., Goeuriot, D., & Poirier, J. (2017). Corrosion of Al2O3-SiO2 refractories by sodium and sulfur vapors: A case study on hazardous waste incinerators. Ceramics International, 43(7), 5743–5750. https://doi.org/10.1016/j.ceramint.2017.01.116
