Integrated geophysical assessment of coal mass structural weakening zones for optimization of drilling-blasting operations and coal size control
Ravil’ Mussin1, Piotr Małkowski2, Fariza Murtazina1, Ainash Kainazarova3, Denis Akhmatnurov1, Nail’ Zamaliyev1, Dinara Doni1
1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan
2AGH University of Krakow, Krakow, Poland
3Ekibastuz Technical and Engineering Institute named after the academician K. Satpayev, Ekibastuz, Kazakhstan
Min. miner. depos. 2025, 19(4):99-118
https://doi.org/10.33271/mining19.04.099
Full text (PDF)
      ABSTRACT
      Purpose. The purpose of this research is to develop a scientifically sound system for managing the coarse-grained raw coal at JSC Shubarkol Komir enterprise based on comprehensive geophysical diagnostics of structural weakening and fracturing zones in coal seams. The research aims at improving the efficiency of drilling-blasting operations, reducing the proportion of fines and ensuring the stability of quarry benches through the use of geophysical rock mass state indicators.
      Methods. The research was performed using a set of geophysical methods, including electrical resistivity prospecting using the Electrical Tomography (ERT) method, electrical prospecting using the Mean Gradient (MG) installation, seismic prospec-ting using refracted waves (Refraction Seismic, RS) method, Spectral Seismic Profiling (SSP), ground-penetrating radar (GPR) surveying and radonometry (emanation surveying). Complex data interpretation was performed using 3D modeling of the specific electrical resistance (ρ) and longitudinal wave velocity (Vₚ) distributions, as well as statistical analysis of correlations between ρ, Vₚ and C(Rn) parameters.
      Findings. It has been found that a decrease in specific electrical resistance below 60-100 Ohm·m and a decrease in longitudinal wave velocities below 1500-1800 m/s reliably reflect the development of fracturing and loosening of the rock mass. Radon concentration increases by 1.5-2 times in the same zones, confirming their tectonic activity. ERT and MG methods are recognized as basic for diagnosing weakened zones, RS method – as a calibration method, radonometry – as a verification method, and SSP and GPR methods – as methods that are limited in their applicability in conditions of high water content.
      Originality. For the first time for the Shubarkol deposit, a comprehensive methodology for cross-spectrum analysis of electrical, seismic and radiation parameters has been developed and tested, providing a quantitative assessment of the geomechanical state of the mass and a prediction of its structural changes.
      Practical implications. The implementation of the proposed methodology allows for the identification of weakening zones with an accuracy of ±5 m in depth and ±10 m along the strike, the adjustment of parameters of drilling-blasting operations, a 3-5% reduction in the proportion of fine material (< 6 mm), and an increase in the stability of quarry benches.
      Keywords: fracturing, coal, geophysical assessment, deposit, weakening, stability
      REFERENCES
- Bejsebaev, A.M., Bitimbaev, M.Zh., Krupnik, L.A., & Tsekhovoj, A.F. (2001). The role of central Asian mining and industrial union in the development of mining and metallurgical complex in Kazakhstan. Gornyi Zhurnal, 11, 10–13.
- Dubovenko, Y.I., Nazirova, A.B., & Abdoldina, F.N. (2022). Data-driven preprocessing of gravity data in oilfield GIS monitoring system in Kazakhstan. Proceedings of the International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, 1, 1–4. https://doi.org/10.3997/2214-4609.2022580267
- Zholbassarova, A.T., Bayamirova, R.Y., Ratov, B.T., Khomenko, V.L., Togasheva, A.R., Sarbopeyeva, M.D., Tabylganov, M.T., Saduakasov, D.S., Gusmanova, A.G., & Koroviaka, Ye.A. (2024). Development of technology for intensification of oil production using emulsion based on natural gasoline and solutions of nitrite compounds. SOCAR Proceedings, 2, 48–55. https://doi.org/10.5510/OGP20240200965
- Bitimbaev, M.Zh., & Edygenov, E.K. (2001). Scientific and technological developments of the institute in the field of mining matter. Gornyi Zhurnal, 11, 86–89.
- Buktukov, N., Gumennikov, Y., & Moldabayeva, G. (2024). Solutions to the problems of transition to green energy in Kazakhstan. World-Systems Evolution and Global Futures, 113–133. https://doi.org/10.1007/978-3-031-67583-6_6
- Shakiyeva, T.V., Sassykova, L.R., Dzhatkambayeva, U.N., Khamlenko, A.A., Zhakirova, N.K., Batyrbayeva, A.A., Azhigulova, R.N., Kubekova, Sh.N., Zhaxibayeva, Zh.M., Kozhaisakova, M.A., Zhusupova, L.A., Sendilvelan, S., & Bhaskar, K. (2021). Optimization of the oxidative cracking of fuel oil on catalysts obtained from Kazakhstan raw materials. Rasayan Journal of Chemistry, 14(2), 1056–1071. https://doi.org/10.31788/RJC.2021.1426152
- Fodor, M.M., Begentayev, M., & Turegeldinova, A. (2025). Supporting R, D&I in the creative industries. Research, Development and Innovation in the Creative Industries, 65, 65–78. https://doi.org/10.4324/9781003481805-4
- Laktionova, O., Kovalenko, Y., Myhovych, T., & Zharikova, O. (2023). Transforming financial outsourcing services for sustainable business development: A review on green finance. Economics Ecology Socium, 6(4), 37–50. https://doi.org/10.31520/2616-7107/2022.6.4-4
- Kezembayeva, G., Rysbekov, K., Dyussenova, Z., Zhumagulov, A., Umbetaly, S., Barmenshinova, M., Yerkezhan, B., & Zhakypbek, Y. (2025). Public health risk assessment of quantitative emission from a molybdenum production plant: Case study of Kazakhstan. Engineered Science, 34, 1454. https://doi.org/10.30919/es1454
- Yelemessov, K.K., Baskanbayeva, D.D., Sabirova, L.B., & Akhmetova, S.D. (2023). Justification of an acceptable modern energy-efficient method of obtaining sodium silicate for production in Kazakhstan. IOP Conference Series: Earth and Environmental Science, 1254(1), 012002. https://doi.org/10.1088/1755-1315/1254/1/012002
- Akilbekova, S.K., Moldabayeva, G.Z., Myrzalieva, S.K., & Seidakhmetova, N.M. (2027). To the question of pyrometallurgical technology for processing antimony-gold-bearing ores and concentrates. Kompleksnoe Ispolzovanie Mineralnogo Syra, 340(1), 77–86. https://doi.org/10.31643/2027/6445.08
- Mussin, R.A., Yachsishin, M.G., Golik, A.V., & Akhmatnurov, D.R. (2026). Block modeling reserves estimation. Kompleksnoe Ispolzovanie Mineralnogo Syra, 339(4), 97–103. https://doi.org/10.31643/2026/6445.44
- Nurpeisova, M.B., Salkynov, A.T., Soltabayeva, S.T., & Miletenko, N.A. (2024). Patterns of development of geomechanical processes during hybrid open pit/underground mineral mining. Eurasian Mining, 41(1), 7–11. https://doi.org/10.17580/em.2024.01.02
- Popovych, V., Skrobala, V., Tyndyk, O., Petlovanyi, M., Sai, K., Popovych, N., Konanets, R., & Ilkiv, B. (2025). Modelling the seasonal dynamics of heavy metal pollution of water bodies within a mining area. Rudarsko-Geolosko-Naftni Zbornik, 40(3), 195–208. https://doi.org/10.17794/rgn.2025.3.13
- Malanchuk, Z.R., Korniyenko, V.Y., Zaiets, V.V., Vasylchuk, O.Y., Kucheruk, M.O., & Semeniuk, V.V. (2023). Study of hydroerosion process parameters of zeolite-smectite tuffs and underlying rock. IOP Conference Series: Earth and Environmental Science, 1254(1), 012051. https://doi.org/10.1088/1755-1315/1254/1/012051
- Moldabayev, S., Issakov, B., Sarybayev, N., Nurmanova, A., & Akhmetkanov, D. (2022). Provisions for cleaning-up deep zone of open pit mines using loading devices. International Multidisciplinary Scientific GeoConference, 22(1.1), 339–346. https://doi.org/10.5593/sgem2022/1.1/s03.039
- Nurpeissova, M.B., Meirambek, G., Donenbayeva, N.S., Ormambekov, Y.Zh., & Bek, R.S. (2025). Development of method for assessing quarry slope stability using side massif mapping. News of the National Academy of Sciences of the Republic of Kazakhstan, 3, 166–178. https://doi.org/10.32014/2025.2518-170X.468
- Ratov, B.T., Mechnik, V.A., Bondarenko, N.A., Kolodnitsky, V.N., Khomenko, V.L., Sundetova, P.S., Korostyshevsky, D.L., Bayamirova, R.U., & Makyzhanova, A.T. (2024). Increasing the durability of an impregnated diamond core bit for drilling hard rocks. SOCAR Proceedings, 1, 24–31. https://doi.org/10.5510/OGP20240100936
- Nazirova, A., Kalimoldayev, M., Abdoldina, F., & Dubovenko, Y. (2022). Optimization of an information system module for solving a direct gravimetry problem using a genetic algorithm. Eastern-European Journal of Enterprise Technologies, 2(9(116)), 21–34. https://doi.org/10.15587/1729-4061.2022.253976
- Moldabayeva, G.Z., Turdiyev, M.F., Suleimenova, R.T., Buktukov, N.S., Efendiyev, G.M., Kodanova, S.K., & Tuzelbayeva, S.R. (2025). Application of the integrated well-surface facility production system for selecting the optimal operating mode of equipment. Kompleksnoe Ispolzovanie Mineralnogo Syra, 335(4), 96–109. https://doi.org/10.31643/2025/6445.44
- Ratov, B., Fedorov, B., Khomenko, V., Kuttybayev, A., & Sarbopeyeva, M. (2024). Development of a combined spud bit for drilling technological wells in Kazakhstan. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 24(1.1), 565–574. https://doi.org/10.5593/sgem2024/1.1/s06.71
- Kuldeev, E.I., Rysbekov, K.B., Donenbayevaa, N.S., & Miletenko, N.A. (2021). Modern methods of geotechnic-effective way of providing industrial safety in mines. Eurasian Mining, 36(2), 18–21. https://doi.org/10.17580/em.2021.02.04
- Małkowski, P., Niedbalski, Z., & Balarabe, T. (2021). A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: A case study. International Journal of Coal Science & Technology, 8(2), 312–323. https://doi.org/10.1007/s40789-020-00369-2
- Khomenko, V., Muratova, S., Utepov, Z., & Zhanggirkhanova, A. (2025). Improved technique for measuring rheological properties of drilling fluid. Engineering for Rural Development, 24, 497–504. https://doi.org/10.22616/ERDev.2025.24.TF107
- Nurpeisova, M., Kirgizbaeva, D., Kopzhasaruly, K., & Bek, A. (2015). Integrated sustaining of technogenic mine structures. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 199–204. https://doi.org/10.1201/b19901-36
- Smanov, Z., Duisenbayev, S., Zulpykharov, K., Laiskhanov, S., Turymtayev, Z., Kozhayev, Z., Atasoy, E., & Taukebayev, O. (2025). Soil salinization and its impact on the degradation of agricultural landscapes of the Talas district, Kazakhstan. Journal of the Geographical Institute Jovan Cvijic Sasa, 75(2), 233–250. https://doi.org/10.2298/ijgi2502233s
- Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst. Canadian Mineralogist, 37(5), 1117–1129. https://doi.org/10.3749/canmin.37/.1117
- Razaque, A., Bektemyssova, G., Yoo, J., Hariri, S., Khan, M.J., Nalgozhina, N., Jaeryong, H., & Khan, M.A. (2025). Review of malicious code detection in data mining applications: Challenges, algorithms, and future direction. Cluster Computing, 28(3), 1–37. https://doi.org/10.1007/s10586-024-05017-x
- Rysbekov, K.B., Kyrgizbayeva, D.M., Miletenko, N.A., & Kuandykov, T.A. (2024). Integrated monitoring of the area of Zhilandy deposits. Eurasian Mining, 41(1), 3–6. https://doi.org/10.17580/em.2024.01.01
- Peremetchyk, A., Pysmennyi, S., Chukharev, S., Korniyenko, V., & Fedorenko, S. (2024). Monitoring and estimation of mining and geometric indicators of the deposit. IOP Conference Series: Earth and Environmental Science, 1348(1), 012031. https://doi.org/10.1088/1755-1315/1348/1/012031
- Nurpeisova, M.B., Meirambek, G., Fedotenko, N.A., & Anetov, B.T. (2024). A new approach to monitoring deformation of engineering structures in seismically active regions. Eurasian Mining, 2, 43–45. https://doi.org/10.17580/em.2024.01.09
- Ahmadi, H., Hussaini, M.R., Yousufi, A., Bekbotayeva, A., Baisalova, A., Amralinova, B., Mataibayeva, I., Rahmani, A.B., Pekkan, E., & Sahak, N. (2023). Geospatial insights into ophiolitic complexes in the cimmerian realm of the Afghan Central Block (Middle Afghanistan). Minerals, 13(11), 1453. https://doi.org/10.3390/min13111453
- Sadchikov, A.V., Zamaliyev, N.M., Akhmatnurov, D.R., Mussin, R.A., & Ganyukov, N.Yu. (2025). Application of mine geophysics method to solving problems of geology. Mining Informational and Analytical Bulletin, 6, 109–124. https://doi.org/10.25018/0236_1493_2025_6_0_109
- Abdoldina, F.N., Nazirova, A.N., Dubovenko, Y.I., & Umirova, G.K. (2020). On the solution of the gravity direct problem for a prism with a simulated annealing approach. Geomodel 2020, 1, 1–5. https://doi.org/10.3997/2214-4609.202050014
- Mendygaliyev, A.A., Arshamov, Ya.K., Rysbekov, K.B., & Meirambek, G.M. (2025). Forecasting roll-front uranium provinces based on integrated geological and satellite remote sensing data. Eurasian Mining, 18–22. https://doi.org/10.17580/em.2025.01.03
- Rakhimbayeva, D., Kyrgizbayeva, G., Shoganbekova, D., Nurpeissova, T., & Yusupov, Kh. (2023). Study of the method for monitoring the caspian sea coastline based on the data of remote sensing of the earth. News of the National Academy of Sciences of the Republic of Kazakhstan Series of Geology and Technical Sciences, 6(462), 157–173. https://doi.org/10.32014/2023.2518-170x.356
- Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, 280, 08001. https://doi.org/10.1051/e3sconf/202128008001
- Shults, R., Seitkazina, G., Annenkov, A., Demianenko, R., Soltabayeva, S., Kozhayev, Z., & Orazbekova, G. (2025). Complex geodetic monitoring of the massive sports structures by terrestrial laser scanning. Civil Engineering Journal, 11(3), 884–909. https://doi.org/10.28991/CEJ-2025-011-03-05
- Kondratyev, S.I., Baskanbayeva, D., Yelemessov, K., Khekert, E.V., Privalov, V.E., Sarsenbayev, Y., & Turkin, V.A. (2024). Control of hydrogen leaks from storage tanks and fuel supply systems to mining transport infrastructure facilities. International Journal of Hydrogen Energy, 95, 212–216. https://doi.org/10.1016/j.ijhydene.2024.11.182
- Khvedelidze, P., Sokolov, A., Klenin, O., & Hryshyna, L. (2024). Strategic management of sustainable economic development in transport and logistics sector companies. Economics Ecology Socium, 8(4), 99–108. https://doi.org/10.61954/2616-7107/2024.8.4-9
- Nizametdinov, F., Nizametdinov, R., Akhmatnurov, D., Zamaliyev, N., Mussin, R., Ganyukov, N., Skrzypkowski, K., Korzeniowski, W., Stasica, J., & Rak, Z. (2025). Geomechanical basis for assessing open-pit slope stability in high-altitude gold mining. Applied Sciences, 15(15), 8372. https://doi.org/10.3390/app15158372
- Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287–291. https://doi.org/10.1201/b19901-51
- Peremetchyk, A., Chukharev, S., Pysmennyi, S., Fedorenko, S., Podoynitsyna, T., & Sobczyk, W. (2024). Comprehensive methodology for geometrization of mineral deposits. Inżynieria Mineralna, 2(1), 151–162. https://doi.org/10.29227/IM-2024-01-104
- Yu, C., Chen, W., Zhang, X., & Lei, K. (2022). Review and challenges in the geophysical mapping of coal mine water-conducting structures. Geofluids, 1, 4578072. https://doi.org/10.1155/2022/4578072
- [45] Rakhimbayeva, D., Kyrgizbayeva, G., Shoganbekova, D., Nurpeissova, T., & Yusupov, Kh. (2023). Study of the method for monitoring the caspian sea coastline based on the data of remote sensing of the earth. NEWS of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(462), 157-173.https://doi.org/10.32014/2023.2518-170x.356
- Lu, T., Liu, H., Jia, H., & Wang, B. (2024). A geophysical-drilling-hydrochemical coupled method for accurate detection of concealed water-conducting faults in coal mines. Water, 16(18), 2619. https://doi.org/10.3390/w16182619
- Zhang, W., Zhang, D.-S., Wu, L.-X., & Wang, H.-Z. (2014). On-site radon detection of mining-induced fractures from overlying strata to the surface: A case study of the Baoshan Coal Mine in China. Energies, 7(12), 8483–8504. https://doi.org/10.3390/en7128483
- Ismagulova, A.Z., Begentayev, M.M., & Tileuberdi, N. (2025). Studies of influence of lithological composition of overburden rock on colmation process in open-type infiltration basins. ES Materials and Manufacturing, 28, 1473. https://doi.org/10.30919/mm1473
- Wysocka, M., Skowrońska, B., Skubacz, K., & Różański, S. (2022). Radon concentrations in dwellings in the mining area – Are they linked to former mining activity? International Journal of Environmental Research and Public Health, 19(5), 2806. https://doi.org/10.3390/ijerph19095214
- Nazirova, A.B., Dubovenko, Y.I., Abdoldina, F.N., & Kuzminets, M.P. (2021). Optimization of GIS modules for processing data of gravity monitoring of subsoil in the Republic of Kazakhstan. Geoinformatics, 1, 1–6. https://doi.org/10.3997/2214-4609.20215521136
- Aben, E.Kh., Malanchuk, Z.R., Fedotenko, V.S., & Orynbaev, B.A. (2023). Improving efficiency of rock breaking using pre-weakening of rock mass. Eurasian Mining, 40(2), 62–65. https://doi.org/10.17580/em.2023.02.13
- Abdoldina, F., Nazirova, A., Dubovenko, Y., & Umirova, G. (2020). On the solution of the gravity direct problem for a sphere with a simulated annealing approach. International Multidisciplinary Scientific GeoConference, 20(2.1), 239–245. https://doi.org/10.5593/sgem2020/2.1/s07.031
- Gomo, S., De Oliveira, L., & Araujo, F. (2023). Integrated geophysical methods for boulder delineation to improve shallow subsurface characterisation. Geophysical Prospecting, 71(3), 884–898. https://doi.org/10.1111/1365-2478.13322
- Daniliev, S., Danilieva, N., Mulev, S., & Frid, V. (2022). Integration of seismic refraction and fracture-induced electromagnetic radiation methods to assess the stability of the roof in mine-workings. Minerals, 12(5), 609. https://doi.org/10.3390/min12050609
- Kirgizbaeva, D., Nurpeisova, M., Shakirov, Z., & Levin, E. (2015). Use of geographic information systems at creation three-dimensional models of mine objects. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 117–121. https://doi.org/10.1201/b19901-22
- Batista Rodríguez, J.A., Pérez Flores, M.A., & Almaguer Carmenates, J. (2019). Electrical resistivity tomography to detect subsurface cavities related to underground coal mining. Geofísica Internacional, 58(4), 279–293. https://doi.org/10.22201/igeof.00167169p.2019.58.4.2058
- Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P.T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, 280, 01003. https://doi.org/10.1051/e3sconf/202128001003
- Daniliev, S., Danilieva, N., Mulev, S., & Frid, V. (2022). Integration of refraction seismic and fracture-induced EMR to assess mine-roof stability. Minerals, 12(5), 609.https://doi.org/10.3390/min12050609
- Khan, M., He, X., Farid, A., Song, D., Li, Z., Tian, X., & Ni, M. (2021). A novel geophysical method for fractures mapping and risk zones identification in a coalmine, Northeast, China. Energy Reports, 7, 3785–3804. https://doi.org/10.1016/j.egyr.2021.06.071
- Li, Y., Wang, J., Chen, Y., Wang, Z., & Wang, J. (2019). Overlying strata movement with ground penetrating radar detection in close-multiple coal seams mining. International Journal of Distributed Sensor Networks, 15(8), 1550147719869852. https://doi.org/10.1177/15501477198698
- Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Science Reviews, 66(3–4), 261–330. https://doi.org/10.1016/j.earscirev.2004.01.004
- Buness, H., Tanner, D.C., Burschil, T., Gabriel, G., & Wielandt-Schuster, U. (2022). Cuspate-lobate folding in glacial sediments revealed by a small-scale 3-D seismic survey. Journal of Applied Geophysics, 200, 104614. https://doi.org/10.1016/j.jappgeo.2022.104614
- Rupesh, R., Tiwari, P., & Sharma, S.P. (2024). Estimation of geotechnical parameters for coal exploration from quasi-3D electrical resistivity measurements. Minerals, 14(1), 102. https://doi.org/10.3390/min14010102
- Bian, J., Liu, A., Yang, S., Lu, Q., Jia, B., Li, F., Ma, X., Gong, S., & Cai, W. (2024). A combined method of seismic monitoring and transient electromagnetic detection for the evaluation of hydraulic fracturing effect in coal burst prevention. Sensors, 24(6), 1771. https://doi.org/10.3390/s24061771
- Morales-Simfors, N., Wyss, R.A., & Bundschuh, J. (2020). Recent progress in radon-based monitoring as seismic and volcanic precursor: A critical review. Critical Reviews in Environmental Science and Technology, 50(10), 979–1012. https://doi.org/10.1080/10643389.2019.1642833
- Ioannides, K., Papachristodoulou, C., Stamoulis, K., Karamanis, D., Pavlides, S., Chatzipetros, A., & Karakala, E. (2003). Soil gas radon: A tool for exploring active fault zones. Applied Radiation and Isotopes, 59(2–3), 205–213. https://doi.org/10.1016/S0969-8043(03)00164-7
- Putiška, R., Dostál, I., Mojzeš, A., Gajdoš, V., Rozimant, K., & Vojtko, R. (2012). The resistivity image of the Muráň fault zone (Central Western Carpathians) obtained by electrical resistivity tomography. Geologica Carpathica, 63(3), 233–239. https://doi.org/10.2478/v10096-012-0017-3
- Beres Jr, M., & Haeni, F.P. (1991). Application of ground-penetrating-radar methods in hydrogeologie studies. Groundwater, 29(3), 375–386. https://doi.org/10.1111/j.1745-6584.1991.tb00528.x
- Zhang, M., Feng, X., Bano, M., Xing, H., Wang, T., Liang, W., Zhou, H., Dong, Z., An, Y., & Zhang, Y. (2022). Review of ground penetrating radar applications for water dynamics studies in unsaturated zone. Remote Sensing, 14(23), 5993. https://doi.org/10.3390/rs14235993
- Saintenoy, A., Schneider, S., & Tucholka, P. (2008). Evaluating ground penetrating radar use for water infiltration monitoring. Vadose Zone Journal, 7(1), 208–214. https://doi.org/10.2136/vzj2007.0132
- Rieß, A., & Dietrich, P. (2025). Investigation of hydrogeological structures in carbonate rock with ground penetrating radar. Environmental Earth Sciences, 84(8), 1–20. https://doi.org/10.1007/s12665-025-12162-y
