Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Probabilistic analysis application to substantiate support parameters in seismically active and fractured rock masses

Aibek Mussin1, Askar Imashev1, Azamat Matayev1, Bolatkhan Khussan 1, Rabbel Abdrashev1

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan


Min. miner. depos. 2025, 19(3):66-75


https://doi.org/10.33271/mining19.03.066

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to substantiate support parameters for underground mine workings in the conditions of fractured and seismically active masses using probabilistic stability analysis.

      Methods. The research is based on the integration of field engineering-geological observations, geological-structural ana-lysis, numerical modeling and probabilistic stability assessment methods. Based on the geotechnical description of oriented cores, the mass fracturing parameters (RQD, Jn, Jr, Ja) were determined, stereographic analysis using Dips software was performed and the mass quality index Q′ was calculated. Probabilistic stability analysis of wedges was conducted in the Unwedge software package, taking into account dynamic effects and seismicity coefficients up to 0.4. Scenarios without support, with roof-bolt and combined supports are discussed.

      Findings. It has been found that at unfavorable mine working orientation and high seismic loads, the factor of safety (FS) does not reach the design values (FS ≥ 1.5) without the use of support, which necessitates the use of combined support schemes.

      Originality. The novelty is in the complex application of probabilistic stability analysis taking into account real geometric and mechanical characteristics of fracturing, seismic impact and spatial anisotropy of the mass. For the first time, field data, Q′ index and Unwedge modeling have been combined for specific engineering-geological conditions to substantiate the parameters of a combined support adapted to seismically active fractured masses.

      Practical implications. The developed methodology can be adapted to various mining-technical conditions and helps to increase the reliability of design solutions for construction and operation of underground structures in difficult geological and seismically active areas.

      Keywords: fracturing, underground mine workings, support, probabilistic analysis, seismic activity, numerical modeling


      REFERENCES

  1. Rakishev, B.R., Orynbay, A.A., Musakhan, A.B., & Toleuov, K.A. (2021). Justification of cylindrical entry cut geometry in underground mine gallery. Mining Informational and Analytical Bulletin, 12, 31-46. https://doi.org/10.25018/0236_1493_2021_12_0_31
  2. Yetkin, M.E., Ozfirat, M.K., & Onargan, T. (2024). Examining the optimum panel pillar dimension in longwall mining considering stress distribution. Scientific Reports, 14(1), 6928. https://doi.org/10.1038/s41598-024-57579-w
  3. Mudamburi, W., Zvarivadza, T., Muwirimi, T.B., Onifade, M., & Khandelwal, M. (2025). Optimisation of stope support system using kinematic analysis and numerical modelling – A sustainable mining approach. Results in Earth Sciences, 3, 100083. https://doi.org/10.1016/j.rines.2025.100083
  4. Vasyliev, L., Bulich, Y., Vasyliev, D., Malich, M., Rizo, Z., Polishchuk, A., Kress, D., & Kuttiubaev, A. (2023). Spall fracture forms of high rock samples under uniaxial compression. IOP Conference Series: Earth and Environmental Science, 1156(1), 012036. https://doi.org/10.1088/1755-1315/1156/1/012036
  5. Ranjbarnia, M., Zarei, F., & Goudarzy, M. (2023). Probabilistic analysis of bearing capacity of square and strip foundations on rock mass by the response surface methodology. Rock Mechanics and Rock Engineering, 56, 343-362. https://doi.org/10.1007/s00603-022-03090-5
  6. Khodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and probabilistic risk management approaches in construction projects: A systematic literature review and comparative analysis. Buildings, 13, 1312. https://doi.org/10.3390/buildings13051312
  7. Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2, 3-10. https://doi.org/10.5593/sgem2016/b22/s09.001
  8. Nalgozhina, N., Smagul, D., Yesmurzayeva, A., & Daineko, Y. (2024). A comprehensive framework for integrating RPA into logistics systems. Procedia Computer Science, 251, 561-566. https://doi.org/10.1016/j.procs.2024.11.149
  9. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Dubiei, Yu.V., Cabana, E.C., & Shavarskyi, Ia.T. (2019). Technological, lithological and economic aspects of data geometrization in coal mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 22-28. https://doi.org/10.29202/nvngu/2019-5/4
  10. Griffiths, D.V., & Fenton, G.A. (2002). Probabilistic slope stability analysis by finite elements. Géotechnique, 52(2), 115-122. https://doi.org/10.1680/geot.2002.52.2.115
  11. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, 1, 41-45. https://doi.org/10.17580/em.2022.01.08
  12. Li, D., Li, S., & Wang, X. (2022). Probabilistic analysis of rock slope stability considering spatial variability and correlation of rock properties. Computers and Geotechnics, 143, 104621. https://doi.org/10.1016/j.compgeo.2022.104621
  13. Liu, H., Zhang, L., & Tang, W.H. (2020). Reliability analysis of underground excavations using Monte Carlo simulation and response surface method. Tunnelling and Underground Space Technology, 99, 103388. https://doi.org/10.1016/j.tust.2020.103388
  14. Mazraehli, M., & Zare, N. (2022). Probabilistic evaluation of support systems in tunneling considering peak and residual strength uncertainty. Geotechnical and Geological Engineering, 40, 1121-1138. https://doi.org/10.1007/s10706-022-02057-1
  15. Chen, Z., Zhang, D., & Zhang, M. (2022). Effect of initial stress anisotropy on the stability of deep tunnels using probabilistic methods. Applied Sciences, 12(15), 7479. https://doi.org/10.3390/app12157479
  16. Nurpeisova, M.B., Salkynov, A.T., Soltabayeva, S.T., & Miletenko, N.A. (2024). Patterns of development of geomechanical processes during hybrid open pit/underground mineral mining. Eurasian Mining, 41(1), 7-11. https://doi.org/10.17580/em.2024.01.02
  17. Alam, M.S., Haque, A., & Rahman, M.M. (2023). Global sensitivity analysis of rock slope stability using Sobol method and reliability analysis. Arabian Journal of Geosciences, 16, 94. https://doi.org/10.1007/s12517-023-11454-6
  18. Zhang, Y., Zhang, J., & Wang, Y. (2023). The influence of different influencing factors in the jointed rock formation on the failure mode of the tunnel. Geotechnical and Geological Engineering, 41, 1183-1201. https://doi.org/10.1007/s10706-022-02329-w
  19. Schubert, W., & Mendez, J.M.D. (2017). Influence of foliation orientation on tunnel behavior. Procedia Engineering, 191, 880-885. https://doi.org/10.1016/j.proeng.2017.05.257
  20. Tavakoli, H., Kutanaei, S.S., & Hosseini, S.H. (2019). Assessment of seismic amplification factor of excavation with support system. Earthquake Engineering and Engineering Vibration, 18, 555-566. https://doi.org/10.1007/s11803-019-0521-x
  21. Kudrna, P., & Sagaseta, C. (2013). The use of the direct optimized probabilistic calculation method in design of bolt reinforcement for underground and mining workings. International Journal of Rock Mechanics and Mining Sciences, 63, 122-130. https://doi.org/10.1016/j.ijrmms.2013.01.004
  22. Matayev, A.K., Lozynskyi, V.H., Musin, A., Abdrashev, R.M., Kuantay, A.S., & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 57-63. https://doi.org/10.33271/nvngu/2021-3/057
  23. Pei, L., Zhang, S., Yang, Y., & Lin, D.A. (2023). Deterministic method for evaluating safety factor of deep excavation stability against groundwater inrush equivalently considering soil uncertainty. Sustainability, 15, 748. https://doi.org/10.3390/su15010748
  24. Shiau, J., Nguyen, T., & Pham-Tran-Hung, T. (2025). Probabilistic assessment of passive earth pressures considering spatial variability of soil parameters and design factors. Scientific Reports, 15, 4752. https://doi.org/10.1038/s41598-025-87989-3
  25. McKay, M.D., Beckman, R.J., & Conover, W.J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239-245. https://doi.org/10.1080/00401706.1979.10489755
  26. Helton, J.C., & Davis, F.J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23-69. https://doi.org/10.1016/S0951-8320(03)00058-9
  27. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  28. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 26-32.
  29. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35
  30. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 147-150. https://doi.org/10.1201/b13157-26
  31. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, 300 p. https://doi.org/10.1201/b13157
  32. Malashkevych, D., Petlovanyi, M., Sai, K., & Zubko, S. (2022). Research into the coal quality with a new selective mining technology of the waste rock accumulation in the mined-out area. Mining of Mineral Deposits, 16(4), 103-114. https://doi.org/10.33271/mining16.04.103
  33. Kunarbekova, M., Yeszhan, Y., Zharylkan, S., Alipuly, M., Zhantikeyev, U., Beisebayeva, A., Kudaibergenov, A., Rysbekov, K., Toktarbay, Z., & Azat, S. (2024). The state of the art of the mining and metallurgical industry in Kazakhstan and future perspectives: A systematic review. ES Materials & Manufacturing, 25, 1219. http://doi.org/10.30919/esmm1219
  34. El-Ramly, H., Morgenstern, N.R., & Cruden, D.M. (2002). Probabilistic slope stability analysis for practice. Canadian Geotechnical Journal, 39(3), 665-683. https://doi.org/10.1139/t02-035
  35. Zhang, Y., Cao, P., Liu, T., & Wang, X. (2019). Probabilistic analysis and sensitivity evaluation of slope stability using Monte Carlo simulation. Geotechnical and Geological Engineering, 37(4), 3001-3016. https://doi.org/10.1007/s10706-019-01048-z
  36. Mussin, A., Kydrashov, A., Asanova, Z., Abdrakhman, Y., & Ivadilinova, D. (2024). Ore dilution control when mining low-thickness ore bodies using a system of sublevel drifts. Mining of Mineral Deposits, 18(2), 18-27. https://doi.org/10.33271/mining18.02.018
  37. Sailygarayeva, M., Nurlan, A., Rysbekov, K., Soltabayeva, S., Amralinova, B., & Baygurin, Z. (2023). Predicting of vertical displacements of structures of engineering buildings and facilities. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 77-83. https://doi.org/10.33271/nvngu/2023-2/077
  38. Pashchenko, O., Khomenko, V., Ishkov, V., Koroviaka, Y., Kirin, R., & Shypunov, S. (2024). Protection of drilling equipment against vibrations during drilling. IOP Conference Series: Earth and Environmental Science, 1348(1), 1-8. https://doi.org/10.1088/1755-1315/1348/1/012004
  39. Ratov, B.T., Mechnik, V.A., Bondarenko, N.A., Kolodnitsky, V.N., Khomenko, V.L., Sundetova, P.S., Korostyshevsky, D.L., Bayamirova, R.U., & Makyzhanova, A.T. (2024). Increasing the durability of an impregnated diamond core bit for drilling hard rocks. SOCAR Proceedings, 1, 24-31. https://doi.org/10.5510/OGP20240100936
  40. Pashchenko, O., Ratov, B., Khomenko, V., Gusmanova, A., & Omirzakova, E. (2024). Methodology for optimizing drill bit performance. Scientific GeoConference Surveying Geology and Mining Ecology Management, 24(1.1), 623-631. https://doi.org/10.5593/sgem2024/1.1/s06.78
  41. Kovrov, O., Babiy, K., Rakishev, B., & Kuttybayev, A. (2016). Influence of watering filled-up rock massif on geomechanical stability of the cyclic and progressive technology line. Mining of Mineral Deposits, 10(2), 55-63. https://doi.org/10.15407/mining10.02.055
  42. Adamaev, M., Kuttybaev, A., & Auezova, A. (2015). Dynamics of dry grinding in two-compartment separator mills. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 435-439. https://doi.org/10.1201/b19901-76
  43. Fisher, R.A. (1953). Dispersion on a sphere. Proceedings of the Royal Society A, 217(1130), 295-305. https://doi.org/10.1098/rspa.1953.0064
  44. Rysbekov, K.B., Kyrgizbayeva, D.M., Miletenko, N.A., & Kuandykov, T.A. (2024). Integrated monitoring of the area of Zhilandy deposits. Eurasian Mining, 41(1), 3-6. http://doi.org/10.17580/em.2024.01.01
  45. Chabani, A., Trullenque, G., Klee, J., & Ledésert, B.A. (2021). Fracture spacing variability and the distribution of fracture patterns in granitic geothermal reservoir: A case study in the noble hills range (Death Valley, CA, USA). Geosciences, 11, 520. https://doi.org/10.3390/geosciences11120520
  46. Langford, J.C., & Diederichs, M.S. (2015). Quantifying uncertainty in Hoek-Brown intact strength envelopes. International Journal of Rock Mechanics and Mining Sciences, 74, 91-102. https://doi.org/10.1016/j.ijrmms.2014.12.008
  47. Kuldeev, Е.I., Rysbekov, K.B., Donenbayevaa, N.S., & Miletenko, N.A. (2021). Modern methods of geotechnic-effective way of providing industrial safety in mines. Eurasian Mining, 36(2), 18-21. https://doi.org/10.17580/em.2021.02.04
  48. Ahmadi, H., Hussaini, M.R., Yousufi, A., Bekbotayeva, A., Baisalova, A., Amralinova, B., Mataibayeva, I., Rahmani, A.B., Pekkan, E., & Sahak, N. (2023). Geospatial insights into ophiolitic complexes in the Cimmerian Realm of the Afghan Central Block (Middle Afghanistan). Minerals, 13(11), 1453. https://doi.org/10.3390/min13111453
  49. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, 66, 03001. https://doi.org/10.1051/e3sconf/20186603001
  50. Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6(4), 189-236. https://doi.org/10.1007/BF01239496
  51. Rakishev, B.R., Auezova, A.M., Kuttybayev, A.Ye., & Kozhantov, A.U. (2014). Specifications of the rock massifs by the block sizes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 22-27.
  52. Imashev, A., Mussin, A., & Adoko, A.C. (2024). Investigating an enhanced contour blasting technique considering rock mass structural properties. Applied Sciences, 14(23), 11461. https://doi.org/10.3390/app142311461
  53. Лицензия Creative Commons