Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Thermodynamic research of coal mining waste gasification processes

Nazar Lysyi1, Andriy Helesh2, Vasyl Popovych1, Pavlo Saik3, Olena Dmytruk3

1Lviv State University of Life Safety Educational and Research, Lviv, Ukraine

2Lviv Polytechnic National University, Lviv, Ukraine

3Dnipro University of Technology, Dnipro, Ukraine


Min. miner. depos. 2025, 19(3):132-143


https://doi.org/10.33271/mining19.03.132

Full text (PDF)


      ABSTRACT

      Purpose. Research aims to study the thermodynamic patterns of coal mining waste gasification process and the formation of a theoretical basis for carbon conversion processes with the production of synthesis gas with a high hydrogen content.

      Methods. Thermodynamic calculations are based on the main carbon conversion reactions in the temperature range of 500-1100°C and pressures of 1-10 atm. To assess the probability of the flow of processes, the values of Gibbs energy, equilibrium constants and equilibrium conversion degree were determined, which made it possible to predict the composition of the gas phase and determine the optimal gasification conditions. The method of least squares was used to ap-proximate the obtained dependences.

      Findings. It has been determined that coal mining waste dumps pose a significant source of environmental hazard, since they lead to pollution of soil, water resources and atmospheric air. Traditional methods of utilization focus mainly on localization, but do not provide complete neutralization of harmful components. The conducted thermodynamic calculations confirmed the expediency of using the gasification process, which is effective at temperatures above 860°C. The autothermal nature of this process is achieved through the partial oxidation of carbon to carbon monoxide (CO), which compensates for heat loss. It has been found that increasing pressure reduces the equilibrium degree of carbon conversion. The obtained thermodynamic dependences make it possible to predict the composition of synthesis gas and, subsequently, to assess the prospects for the implementation of technologies for complex recycling of coal mining waste.

      Originality. For the first time, a comprehensive thermodynamic assessment of coal mining waste gasification reactions has been conducted, and thermodynamic dependences of Gibbs energy change, equilibrium constants, and equilibrium conversion degree have been obtained over a wide range of temperatures and pressures. This made it possible to determine the optimal conditions for the process flow and confirm its technological feasibility at temperatures above 860°C.

      Practical implications. The results of the research form a theoretical basis for creating effective technologies for complex recycling of coal mining waste to produce synthesis gas, which can serve as a promising energy source, ensuring compliance with modern principles of sustainable development and rational nature management.

      Keywords: mining waste, gasification, coal, pyrolysis, conversion, synthesis gas, temperature


      REFERENCES

  1. Baibatyrova, B., Tileuberdi, A., Begentayev, M., Kuldeyev, E., Nyrlybayev, R., Altybayev, Z., Sarsenbayev, B., Abduova, A., & Sauganova, G. (2024). Improving the methods of solid domestic waste disposal to reduce its human impact on the environment. Sustainability, 16(24), 11071. https://doi.org/10.3390/su162411071
  2. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 169-172. https://doi.org/10.1201/b16354-29
  3. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43
  4. Hudson-Edwards, K.A., & Dold, B. (2015). Mine waste characterization, management, and remediation. Elements, 11(5), 353-358. https://doi.org/10.3390/min5010082
  5. Araya, N., Mamani Quiñonez, O., Cisternas, L.A., & Kraslawski, A. (2021). Sustainable development goals in mine tailings management: Targets and indicators. Materials Proceedings, 5(1), 82. https://doi.org/10.3390/materproc2021005082
  6. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 35-40. https://doi.org/10.1201/b13157-7
  7. Popovych, V., Menshykova, O., Voloshchyshyn, A., Genyk, Y., Petlovanyi М., & Ilkiv, B. (2023). Distribution of heavy metals in the coal mine waste dumps based on statistical analysis. Journal of Landscape Ecology, 21(2), 101-115. https://doi.org/10.56617/tl.4957
  8. Yavorskyi, V., Helesh, A., & Yavorskyi, I. (2013). Principals for the creation of effective and economically sound treating processes of industrial emissions with sulfur oxide low content. Chemistry & Chemical Technology, 7(2), 205-211. https://doi.org/10.23939/chcht07.02.205
  9. Coal 2024. Analysis and forecast to 2027. (2024). Report. Paris, France: International Energy Agency, Licence: CC BY 4.0. Retrived from: https://www.iea.org/reports/coal-2024
  10. Tahir, M.H., & Chen, D. (2024). Integrated approach for H2-rich syngas production from wastes using carbon-based catalysts and subsequent CO2 adsorption by carbon-based adsorbents: A review. International Journal of Hydrogen Energy, 59, 679-696. https://doi.org/10.1016/j.ijhydene.2024.02.045
  11. Kenzhina, I.E., Kozlovskiy, A.L., Chikhray, Y., Kulsartov, T., Zaurbekova, Z., Begentayev, M., & Askerbekov, S. (2023). Study of gas swelling processes under irradiation with protons and He2+ ions in Li4SiO4-Li2TiO3 ceramics. Crystals, 13(10), 1526. https://doi.org/10.3390/cryst13101526
  12. Malova, M. (2023). Yak zrobyty nebezpechni terykony bezpechnymy? Kyiv, Ukraina: Natsionalna asotsiatsiia dobuvnoi promyslovosti Ukrainy. Retrived from: https://neiau.com.ua/yak-zrobiti-nebezpechni-terikoni-bezpechnimi/
  13. Song, L., Yu, Y., Yan, Z., Xiao, D., Sun, Y., Zhang, X., Li, X., Cheng, B., Gao, H., & Bai, D. (2022). Rapid analysis of composition of coal gangue based on deep learning and thermal infrared spectroscopy. Sustainability, 14(23), 16210. https://doi.org/10.3390/su142316210
  14. Brovender, Y., Haiko, H., & Brovender, O. (2021). Mining under the early metal in the context of Kartamysh ore occurrence of Ukrainian Donbas. Mining of Mineral Deposits, 15(3), 45-53. https://doi.org/10.33271/mining15.03.045
  15. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  16. Bazaluk, O., Slabyi, O., Vekeryk, V., Velychkovych, A., Ropyak, L., & Lozynskyi, V. (2021). A technology of hydrocarbon fluid production intensification by productive stratum drainage zone reaming. Energies, 14(12), 3514. https://doi.org/10.3390/en14123514
  17. Gao, L., Liu, Y., Xu, K., Bai, L., Guo, N., & Li, S. (2024). A short review of the sustainable utilization of coal gangue in environmental applications. RSC Advances, 14, 39285-39296. https://doi.org/10.1039/D4RA06071G
  18. Zhang, P., Han, Z., Jia, J., Wei, C., Liu, Q., Wang, X., Zhou, J., Li, F., & Miao, S. (2017). Occurrence and distribution of gallium, scandium, and rare earth elements in coal gangue collected from Junggar Basin, China. International Journal of Coal Preparation and Utilization, 39(7), 389-402. https://doi.org/10.1080/19392699.2017.1334645
  19. Wang, J., Xu, H., Cao, Y., Su, Y., Fan, G., Fu, B., & Deng, J. (2024). Efficient leaching of rare earth elements from coal gangue: A mild acid process with reduced impurity extraction. Journal of Sustainable Metallurgy, 10(4), 2601-2620. https://doi.org/10.1007/s40831-024-00954-8
  20. Popovych, V., & Gapalo, A. (2021). Monitoring of ground forest fire impact on heavy metals content in edafic horizons. Journal of Ecological Engineering, 22(5), 96-103. https://doi.org/10.12911/22998993/135872
  21. Kang, C., Yang, S., Qiao, J., Zhao, Y., Dong, S., Wang, Y., Duan, C., & Liu, J. (2024). Extraction of valuable critical metals from coal gangue by roasting activation-sulfuric acid leaching. International Journal of Coal Preparation and Utilization, 44(11), 1810-1827. https://doi.org/10.1080/19392699.2023.2301311
  22. Bosak, P., Popovych, V., Stepova, K., & Dudyn, R. (2020). Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of the National academy of sciences of the Republic of Kazakhstan, Series of Geology and Technical, 2(440), 48-54. https://doi.org/10.32014/2020.2518-170X.30
  23. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 36-42.
  24. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 1(2), 289-300. https://doi.org/10.29227/IM-2018-02-36
  25. Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental studies of the effect of design and technological solutions on the intensification of an underground coal gasification process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369
  26. Gupta, A.K., & Paul, B. (2015). A review on utilisation of coal mine overburden dump waste as underground mine filling material: A sustainable approach of mining. International Journal of Mining and Mineral Engineering, 6(2), 172. https://doi.org/10.1504/ijmme.2015.070380
  27. Ashfaq, M., Moghal, A.A.B., & Basha, B.M. (2022). The sustainable utilization of coal gangue in geotechnical and geoenvironmental applications. Journal of Hazardous, Toxic, and Radioactive Waste, 26(3), 03122003. https://doi.org/10.1007/s41062-020-0267-3
  28. Bo, L., Yang, S., Liu, Y., Zhang, Z., Wang, Y., & Wang, Y. (2023). Coal mine solid waste backfill process in China: Current status and challenges. Sustainability, 15(18), 13489. https://doi.org/10.3390/su151813489
  29. Bazaluk, O., Kuchyn, O., Saik, P., Soltabayeva, S., Brui, H., Lozynskyi, V., & Cherniaiev, O. (2023). Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, 13, 19327. https://doi.org/10.1038/s41598-023-46814-5
  30. Petlovanyi, M., Sai, K., Malashkevych, D., Popovych, V., & Khorolskyi, A. (2022). Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, 1156(1), 012007. https://doi.org/10.1088/1755-1315/1156/1/012007
  31. Sokratidou, A., Roumpos, C., Paraskevis, N., Servou, A., & Pavloudakis, F. (2023). Extractive waste management in coal surface mining projects – A circular economy approach. Materials Proceedings, 15(1), 13. https://doi.org/10.3390/materproc2023015013
  32. Haibin, L., & Zhenling, L. (2010). Recycling utilization patterns of coal mining waste in China. Resources, Conservation and Recycling, 54(12), 1331-1340. https://doi.org/10.1016/j.resconrec.2010.05.005
  33. Amrani, M., Taha, Y., El Haloui, Y., Benzaazoua, M., & Hakkou, R. (2020). Sustainable reuse of coal mine waste: Experimental and economic assessments for embankments and pavement layer applications in Morocco. Minerals, 10(10), 851. https://doi.org/10.3390/min10100851
  34. Gotore, O., Watanabe, M., Okano, K., Miyata, N., Katayama, T., Yasutaka, T., Semoto, Y., & Hamai, T. (2025). Effects of batch and continuous-flow operation on biotreatment of Mn(II)-containing mine drainage. Journal of Environmental Sciences, 152, 401-415. https://doi.org/10.1016/j.jes.2024.05.038
  35. Brierley, C.L. (2010). Biohydrometallurgical prospects. Hydrometallurgy, 104(3-4), 324-328. https://doi.org/10.1016/j.hydromet.2010.03.021
  36. Sheoran, V., Sheoran, A.S., & Poonia, P. (2010). Phytomining: A review. Minerals Engineering, 23(14), 1075-1087. https://doi.org/10.1016/j.mineng.2009.04.001
  37. Skrobala, V., Popovych, V., & Pinder, V. (2020). Ecological patterns for vegetation cover formation in the mining waste dumps of the Lviv-Volyn coal basin. Mining of Mineral Deposits, 14(2), 119-127. https://doi.org/10.33271/mining14.02.119
  38. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., & Smoliński, A. (2018). Mathematical and geomechanical model in physical and chemical processes of underground coal gasification. Solid State Phenomena, 277, 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1
  39. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, 277, 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221
  40. Han, L., Li, J., Qu, C., Shao, Z., Yu, T., & Yang, B. (2022). Recent progress in sludge co-pyrolysis technology. Sustainability, 14(13), 7574. https://doi.org/10.3390/su14137574
  41. Márquez, A., Ortiz, I., Sánchez-Hervás, J.M., Monte, M.C., Negro, C., & Blanco, Á. (2023). Global trends of pyrolysis research: A bibliometric analysis. Environmental Science and Pollution Research, 31(1), 931-947. https://doi.org/10.1007/s11356-023-31186-0
  42. Igliński, B., Kujawski, W., & Kiełkowska, U. (2023). Pyrolysis of waste biomass: Technical and process achievements, and future development – A review. Energies, 16(4), 1829. https://doi.org/10.3390/en16041829
  43. Giwa, S.O., & Taziwa, R.T. (2024). Adoption of advanced coal gasification: A panacea to carbon footprint reduction and hydrogen economy transition in South Africa. International Journal of Hydrogen Energy, 77, 301-323. https://doi.org/10.1016/j.ijhydene.2024.06.190
  44. Lysyy, N., Helesh, A., & Popovych, V. (2024). Termodynamichni doslidzhennia protsesiv hazyfikatsii vidkhodiv vydobutku vuhillia. Proceedings of the Ukrainian School of Mining Engineering, 49-50. https://doi.org/10.33271/usme17.049
  45. Lysyy, N.R., Helesh, A.B., & Popovych, V.V. (2024). Gasification of coal-containing waste. In Materials of the International Scientific Conference “Actual Problems of Natural Sciences Development Amidst the Evolution of Artificial Intelligence” (pp. 30-34). Riga, Latvia: Baltija Publishing. https://doi.org/10.30525/978-9934-26-521-1-7
  46. Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V., Cabana, E.C., & Hrytsenko, L. (2021). Chemistry of the gasification of carbonaceous raw material. Materials Science Forum, 1045, 67-78. https://doi.org/10.4028/www.scientific.net/MSF.1045.67
  47. Dai, F., Zhang, S., Luo, Y., Wang, K., Liu, Y., & Ji, X. (2023). Recent progress on hydrogen-rich syngas production from coal gasification. Processes, 11, 1765. https://doi.org/10.3390/pr11061765
  48. Zhang, X., Zhu, S., Song, W., Wang, X., Zhu, J., Chen, R., Ding, H., Hui, J., & Lyu, Q. (2022). Experimental study on conversion characteristics of anthracite and bituminous coal during preheating-gasification. Fuel, 324(Part B), 124712. https://doi.org/10.1016/j.fuel.2022.124712
  49. Li, Z., Wang, W., Shi, J., Feng, Z., Du, F., Wang, G., & Zhou, D. (2024). Microstructure evolution in bituminous-coal pyrolysis under in situ and stress-free conditions: A comparative study. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10, 134. https://doi.org/10.1007/s40948-024-00852-z
  50. Yin, Y., Wu, Z., Tao, J., Qi, C., Zhang, W., & Cheng, S. (2022). Investigation of the evolution of the chemical structure of bituminous coals and lignite during pyrolysis. Crystals, 12(4), 444. https://doi.org/10.3390/cryst12040444
  51. Zhang, W., Guo, J., Guo, H., Cheng, S., & Ren, X. (2024). Pyrolysis characteristics and microstructure evolution of different coal types. Preprint. https://doi.org/10.2139/ssrn.4905919
  52. Saik, P., & Berdnyk, M. (2022). Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87-94. https://doi.org/10.33271/mining16.02.087
  53. Yang, L., Zhang, X., Yan, S., & Luo, Y. (2024). Research on the resource treatment and comprehensive utilization of carbon containing wastes using pyrolysis – Gasification two-stage recycling. Processes, 12, 361. https://doi.org/10.3390/pr12020361
  54. Li, G., Wang, L., Wang, C., Wang, C., Wu, P., & Che, D. (2020). Experimental study on coal gasification in a full-scale two-stage entrained-flow gasifier. Energies, 13(18), 4937. https://doi.org/10.3390/en13184937
  55. Yulusov, S., Surkova, T.Y., Kozlov, V.A., & Barmenshinova, M. (2018). Application of hydrolytic precipitation for separation of rare-earth and impurity elements. Journal of Chemical Technology and Metallurgy, 53(1), 27-30.
  56. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  57. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, 280, 08008. https://doi.org/10.1051/e3sconf/202128008008
  58. Yulusov, S., Surkova, T.Y., Amanzholova, L.U., & Barmenshinova, M.B. (2018). On sorption of the rare-earth elements. Journal of Chemical Technology and Metallurgy, 53(1), 79-82.
  59. Saik, P., Falshtynskyi, V., Lozynskyi, V., Dychkovskyi, R., Berdnyk, M., & Cabana, E. (2023). Substantiating the operating parameters for an underground gas generator as a basic segment of the mining energy-chemical complex. IOP Conference Series: Earth and Environmental Science, 1156(1), 012021. https://doi.org/10.1088/1755-1315/1156/1/012021
  60. Buktukov, N.S., Gumennikov, E.S., & Mashataeva, G.A. (2019). In-situ gasification of steeply dipping coal beds with production hole making by supersonic hydraulic jets. Mining Informational and Analytical Bulletin, 9, 30-40. https://doi.org/10.25018/0236-1493-2019-09-0-30-40
  61. Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V., & Ovcharenko, A. (2024). Achieving climate neutrality in coal mining regions through the underground coal gasification. E3S Web of Conferences, 526, 01004. https://doi.org/10.1051/e3sconf/202452601004
  62. Dychkovskyi, R., Falshtynskyi, V., Saik, P., & Lozynskyi, V. (2025). Aspects of co-utilization of solid waste and coal through underground gasification. IOP Conference Series: Earth and Environmental Science, 1457(1), 012002. https://doi.org/10.1088/1755-1315/1457/1/012002
  63. Büke, A., & Benli, B. (2021). Review of recovery of valuable metals and rare earth elements from coal fly ash as a secondary resource. Bilimsel Madencilik Dergisi, 60(3), 159-167. https://doi.org/10.30797/madencilik.840183
  64. Pizarro Barraza, F., Thiyagarajan, D., Ramadoss, A., Manikandan, V.S., Dhanabalan, S.S., Abarzúa, C.V., Sotomayor Soloaga, P., Campos Nazer, J., Morel, M.J., & Thirumurugan, A. (2024). Unlocking the potential: Mining tailings as a source of sustainable nanomaterials. Renewable and Sustainable Energy Reviews, 202, 114665. https://doi.org/10.1016/j.rser.2024.114665
  65. Helesh, A., Yavorskyi, V., & Yavorskyi, I. (2016). Chemisorption of sulfur (IV) oxide using the horizontal apparatus with bucket-like dispersers. Eastern-European Journal of Enterprise Technologies, 2(6(80)), 46-52. https://doi.org/10.15587/1729-4061.2016.63956
  66. Yavorskyi, V.T., Helesh, A.B., Yavorskyi, I.Ye., & Kalymon, Ya.A. (2016). A theoretical analysis of chemisorption of sulfur (IV) oxide. Rationale for the choice of an efficient mass-exchange apparatus. Eastern-European Journal of Enterprise Technologies, 1(6(79)), 32-40. https://doi.org/10.15587/1729-4061.2016.60312
  67. Kalymon, Y., Helesh, A., & Yavorskyi, O. (2012). Hydrolytic sulphate acid evaporation by waste gases from burning furnaces of meta-titanic acid paste. Chemistry and Chemical Technology, 6(4), 423-429. https://doi.org/10.23939/chcht06.04.423
  68. Yavors’kyi, V.T., & Helesh, A.B. (2016). Determination of the parameters of evaporation of the solutions of sulfuric acid with low corrosion activity of the phases. Materials Science, 51, 691-700. https://doi.org/10.1007/s11003-016-9892-6
  69. Bukreieva, D., Saik, P., Lozynskyi, V., Cabana, E., & Stoliarska, O. (2022). Assessing the effectiveness of innovative projects implementation in the development of coal deposits by geotechnology of underground gasification. IOP Conference Series: Earth and Environmental Science, 970(1), 012031. https://doi.org/10.1088/1755-1315/970/1/012031
  70. Popovych, V., Bosak, P., Petlovanyi, M., Telak, O., Karabyn, V., & Pinder, V. (2021). Environmental safety of phytogenic fields formation on coal mines tailings. News of the National Academy of Sciences of the Republic of Kazakhstan Series of Geology and Technical Sciences, 2(446), 129-136. https://doi.org/10.32014/2021.2518-170X.44
  71. Sribna, Y., Skakovska, S., Paniuk, T., & Hrytsiuk, I. (2023). The economics of technology transfer in the environmental safety of enterprises for the energy transition. Economics Ecology Socium, 7(1), 84-96. https://doi.org/10.31520/2616-7107/2023.7.1-8
  72. Smith, J.M., Van Ness, H.C., Abbott, M.M., & Swihart, M.T. (2017). Introduction to chemical engineering thermodynamics. New York, United States: McGraw-Hill Education, 769 p.
  73. Lozynskyi, V. (2023). Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG). Mining of Mineral Deposits, 17(3), 67-85. https://doi.org/10.33271/mining17.03.067
  74. Duan, W., Li, R., Yang, S., Han, J., Lv, X., Wang, Z., & Yu, Q. (2024). Theoretical study on coal gasification behavior in CO2 atmosphere driven by slag waste heat. Energy, 305, 132269. https://doi.org/10.1016/j.energy.2024.132269
  75. Sukhomlyn, D.A., & Hyrenko, D.V. (2016). Metodychni vkazivky dlia vykonannia indyvidualnykh zavdan (dovidkovi dani) z kursiv “Fizychna khimiia”, “Fizychna khimiia v ekolohii”, “Fizychna ta koloidna khimiia”, “Fizyko-khimichni osnovy teplotekhnolohii”. Dnipro, Ukraina: DVNZ UDKhTU, 56 s.
  76. Baraj, E., Ciahotný, K., & Hlinčík, T. (2022). Advanced catalysts for the water gas shift reaction. Crystals, 12(4), 509. https://doi.org/10.3390/cryst12040509
  77. Monteiro, E., Bourguig, O., & Rouboa, A. (2024). Hydrogen-rich syngas production based on a co-gasification process coupled to a water-gas shift reactor without steam injection. Hydrogen, 5(4), 919-928. https://doi.org/10.3390/hydrogen5040048
  78. Mudassir, H.T., & Dezhen, Ch. (2024). Integrated approach for H2-rich syngas production from wastes using carbon-based catalysts and subsequent CO2 adsorption by carbon-based adsorbents: A review. International Journal of Hydrogen Energy, 59, 679-696. https://doi.org/10.1016/j.ijhydene.2024.02.045
  79. Лицензия Creative Commons