Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Controlling close boundary of a technogenic placer through changes in technological parameters of washery refuse storage

Olha Medvedieva1, Yevhen Semenenko1, Volodymyr Medianyk2, Borys Bluyss3

1M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine, Dnipro, Ukraine

2Dnipro University of Technology, Dnipro, Ukraine

3Prydniprovsky Scientific Center of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Dnipro, Ukraine


Min. miner. depos. 2025, 19(1):72-81


https://doi.org/10.33271/mining19.01.072

Full text (PDF)


      ABSTRACT

      Purpose is to assess the potential to control boundaries of a technogenic placer through changes in the parameters of washery refuse storage process taking into consideration both size and density of particles of each fraction of the granulometric composition.

      Methods. The research has applied approaches developed by V.A. Melentiev and M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine relying upon the condition of a critical flow origination. Problems to control close boundary of a technogenic placer have been considered in the process of hydraulic washery refuse storing in artificial tailing ponds at the expense of changes in technological factors involving characteristics of dry fraction particles of the hydraulic fluid.

      Findings. Limitations have been obtained in the form of intervals of changes in technological influence coefficient values; relative velocity of a hydraulic liquid delivery; relative beach slope; and concentration of the hydraulic liquid flowing to the storage. It has been demonstrated that average beach slope is limited by the particle friction coefficient of the fraction on the beach surface; the abovementioned makes it possible to vary the inwash parameter value from 1.56 to 0.22. It has been identified that in the context of the calculations performed using engineering precision dependence of the inwash parameter upon the coefficient number in Pavlovskyi formula may be ignored since relative error of average value of the parameter use is not more than 1%; hence, its average value depending upon a relative beach slope can be approximated by a decreasing linear function..

      Originality. For the first time, formulas have been proposed to identify the boundaries of intervals of changes in a set of technological parameters of storing process depending upon the required value of a close boundary of the technogenic placer. The abovementioned helps assess both concentration and velocity of hydraulic liquid getting to the inwash beaches; the beach slope; and particle parameters of solid fraction of the stored washery refuse providing the wanted distance from inner slope of a flood wall to a close boundary of the technogenic placer.

      Practical implications. Using the research findings, it becomes possible to control geometry of technogenic placers formed in artificial washery refuse dams in the process of its hydraulic storing. Moreover, it helps avoid location of a flood wall of following levels above technogenic placers of lower inwash formations; construct covering between technogenic placers at two neighbouring levels; achieve separation of the technogenic placer from the fractions containing no valuable components while arranging them within different beach areas, and move closer to selective mining of useful mineral.

      Keywords: beach, inwash, critical flow, hydraulic size, friction coefficient, technogenic placerk


      REFERENCES

  1. Gumenik, I., & Lozhnikov, O. (2015). Current condition of damaged lands by surface mining in Ukraine and its influence on environment. New Developments in Mining Engineering: Theoretical and Practical Solution of Mineral Resources Mining, 139-145. https://doi.org/10.1201/b19901-26
  2. Lim, B., & Alorro, R.D. (2021). Technospheric mining of mine wastes: A review of applications and challenges. Sustainable Chemistry, 2(4), 686-706.https://doi.org/10.3390/suschem2040038
  3. Medvedeva, O.A. (2012). Problemy dalneyshey ekspluatatsii khranilishch otkhodov obogashcheniya Krivbassa i teoreticheskie predposylki ikh resheniya. Heotekhnichna Mekhanika, 97, 155-161.
  4. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  5. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, 280, 08008. https://doi.org/10.1051/e3sconf/202128008008
  6. Yelemessov, K.K., Baskanbayeva, D.D., Sabirova, L.B., & Akhmetova, S.D. (2023). Justification of an acceptable modern energy-efficient method of obtaining sodium silicate for production in Kazakhstan. IOP Conference Series: Earth and Environmental Science, 1254(1), 012002. https://doi.org/10.1088/1755-1315/1254/1/01200
  7. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., Raimbekova, A.S., & Ydyrysheva, S.K. (2022). Mechanically activated silicon-phospho-rus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. Journal of Physics and Chemistry of Solids, 162, 110518. https://doi.org/10.1016/j.jpcs.2021.110518
  8. Raimbekova, A.S., Kapralova, V.I., Popova, A.K., & Kubekova, S.N. (2022). The study of manganese phosphate materials based on enrichment wastes. Journal of Chemical Technology and Metallurgy, 57(1), 176-183.
  9. Araya, N., Kraslawski, A., & Cisternas, L.A. (2020). Towards mine tailings valorization: Recovery of critical materials from Chilean mine tailings. Journal of Cleaner Production, 263, 121555. https://doi.org/10.1016/j.jclepro.2020.121555
  10. Schoenberger, E. (2016). Environmentally sustainable mining: The case of tailings storage facilities. Resources Policy, 49, 119-128. https://doi.org/10.1016/j.resourpol.2016.04.009
  11. Lei, H.U., Xuejiao, C.A.O., Xinxing, L.I.A.N.G., & Weiguang, Z.H.A. (2024). Basic study on extraction of vanadium by pressurized alkali leaching from vanadium extraction tailings. Nonferrous Metals (Extractive Metallurgy), 10, 1-9.
  12. He, T., Zhao, J., Xu, Y., Mao, J., & Wang, H. (2024). Preliminary investigation of the effects of high-temperature thermal activation on the activity of graphite tailings and the mechanical properties of graphite tailings mortar. Construction and Building Materials, 450, 138732. https://doi.org/10.1016/j.conbuildmat.2024.138732
  13. Zhao, J., Ni, K., Su, Y., & Shi, Y. (2021). An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Construction and Building Materials, 286, 122968. https://doi.org/10.1016/j.conbuildmat.2021.122968
  14. Cle, V.H., & Ovalle, C. (2024). Stability of filtered tailings storage facilities. Proceedings of the Polytechnique Montreal, Research Institute on Mines and the Environment, 1-14.
  15. Das, M.R., Satapathy, S., & Pothal, L.K. (2023). A study on waste management in iron mining. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.368
  16. Ravi, B.P., Kumar, P.S., & Rudrappa, C. (2016). Processing of solid wastes from mines, mineral processing and metallurgical plants – A conceptual case study of small size iron-steel industry, Ballari area, Karnataka, India. Journal of Earth Sciences & Environmental Studies, 2(4), 257-266.
  17. Cacciuttolo Vargas, C., & Marinovic Pulido, A. (2022). Sustainable management of thickened tailings in Chile and Peru: A review of practical experience and socio-environmental acceptance. Sustainability, 14(17), 10901. https://doi.org/10.3390/su141710901
  18. Sharma, S., Sontti, S.G., Zhang, W., Nikrityuk, P., & Zhang, X. (2024). Numerical investigation on solids settling in a non-Newtonian slurry inside a horizontal flume. Physics of Fluids, 36(7), 073306. https://doi.org/10.1063/5.0209608
  19. Zheng, B., Zhao, X., Wang, J., Wang, W., Feng, T., & Yang, Y. (2024). Analysis of the slump test for on-site yield stress measurement of thickened tailings. Case Studies in Construction Materials, e03885. https://doi.org/10.1016/j.cscm.2024.e03885
  20. Medvedieva, O.O. (2021). Rozvytok naukovykh osnov resursozberihaiuchykh tekhnolohii hidromekhanizovanoi rozrobky tekhnohennykh rodovyshch. Dnipro, Ukraina: IHTM NAN Ukrainy, 396 s.
  21. Blyuss, B.A., Semenenko, E.V., & Medvedeva, O.A. (2017). Metody upravleniya parametrami tekhnogennykh mestorozhdeniy pri skladirovanii plotnykh pulp otkhodov obogashcheniya. Suchasni Resursoenerhozberigaiuchi Tekhnolohii Hirnychoho Vyrobnytstva, 2(20), 71-80.
  22. Shapar, A.G., Vilkul, A.Yu., Kopach, P.I., & Yakubenko, P.I. (2012). Formirovanie i razrabotka tehnogennykh mestorozhdeniy zheleznykh i margantsevykh rud. Dnepropetrovsk, Ukraina: Monolet, 140 s.
  23. Semenenko, Y., Medvedieva, O., Medianyk, V., Іvlev, A., & Blyuss, B. (2022). Justification of the upper limit of slope formation when washing the tail storage tiers. Collection of Research Papers of the National Mining University, 69, 58-70. https://doi.org/10.33271/crpnmu/69.058
  24. Kirichko, S.N. (2012). Raschet parametrov gidrotransporta vysokokontsentrirovannykh gidrosmesey v usloviyakh predpriyatiy Krivbassa. Heotekhnichna Mekhanika, 103, 101-106
  25. Semenenko, Y., Medvedieva, O., Medyanyk, V., & Buketov, V. (2023). Study of parameters and regimes of pressureless flow in a channel with overboard overflow. IOP Conference Series: Earth and Environmental Science, 1156(1), 012030.https://doi.org/10.1088/1755-1315/1156/1/012030
  26. Semenenko, Y., Kril, S., Medvedieva, O., Nykyforova, N., & Tatarko, L. (2019). Calculation of pressure loss and critical velocity for slurry flows with additive agents in vertical polyethylene pipelines. E3S Web of Conferences, 109, 00083. https://doi.org/10.1051/e3sconf/201910900083
  27. Malanchuk, Z.R., Korniyenko, V.Y., Zaiets, V.V., Vasylchuk, O.Y., Kucheruk, M.O., & Semeniuk, V.V. (2023). Study of hydroerosion process parameters of zeolite-smectite tuffs and underlying rock. IOP Conference Series: Earth and Environmental Science, 1254(1), 012051. https://doi.org/10.1088/1755-1315/1254/1/012051
  28. Kril, S.I. (1990). Napornye vzvesenesushchie potoki. Kyiv, Ukraina: Naukova dumka, 160 s.
  29. Bondarenko, A.O. (2015). Naukove obgruntuvannia parametriv kompleksiv novoho tekhnichnoho rivnia dlia hidromekhanizovanoho vydobutku y pererobky zernystykh korysnykh kopalyn. Dnipro, Ukraina: Natsionalnyi hirnychyi universytet, 509 с.
  30. Tatarko, L.H. (2016). Obgruntuvannia parametriv protsesu hidrotransportuvannia mineralnoi syrovyny po mahistraliakh iz stalevykh i polimernykh trub. Dnipro, Ukraina: IHTM NAN Ukrainy, 264 s.
  31. Лицензия Creative Commons