Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Resistance to salt crystallization of thin-bedded or platy limestone from the town of Benkovac in Croatia

Ana Maričić1, Zlatko Briševac1, Uroš Barudžija1

1Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia


Min. miner. depos. 2025, 19(1):98-106


https://doi.org/10.33271/mining19.01.098

Full text (PDF)


      ABSTRACT

      Purpose. This paper aims to show the petrographic microstructural properties of natural stone as a building material from Benkovac, which is exposed to the influence of sea salt crystallization on the Croatian Adriatic coast.

      Methods. The research is based on the graphical and statistical analysis of the results of polarization and electron microscopy, resistance to salt crystallization, ultrasound propagation velocity and uniaxial compressive strength testing. Three diffe-rent lithotypes of limestone – grainy, micritic and laminated are analyzed to evaluate their important petrographic properties that have impact on the durability when material is exposed to the salt crystallization.

      Findings. In the petrographic analysis, different characteristics are highlighted, especially those relevant to anisotropy of the structural features as lamination or layering. Besides determination of resistance to the salt crystallization, propagation of ultrasound direct P waves and uniaxial compressive strength are also tested. It is of scientific importance that a change in the internal structure of all samples, especially the laminated lithotype, is observed during the testing. The decrease of ultrasonic propagation velocity, decrease in compressive strength, and durability due to the action of crystallization pressure is a result of increase of the pore space and the fracturing along natural discontinuities such as lamination and layering.

      Originality. This paper is the first to deal with the resistance to salt crystallization of the Benkovac stone, especially from the point of view of its petrographic properties. It also deals with the new aspect of interpreting the durability results by combining different methods of evaluating properties that are related to each other.

      Practical implications. The knowledge gained in a specific area of the thin-bedded limestone of Benkovac can also be utilized in other places for better and effective protection and preservation of buildings, for which the same type of stone is quarried and used in construction.

      Keywords: Benkovac limestone, thin-bedded or platy limestone, durability, salt crystallization, stone properties, structural anisotropy


      REFERENCES

  1. Winkler, E. (1997). Stone in architecture: Properties, durability. Heidelberg, Germany: Springer Berlin, 315 p. https://doi.org/10.1007/978-3-662-10070-7
  2. Lisci, C., Pires, V., Sitzia, F., & Mirão, J. (2022). Limestones durability study on salt crystallisation: An integrated approach. Case Studies in Construction Materials, 17, e01572. https://doi.org/10.1016/J.CSCM.2022.E01572
  3. Allison, P. (1984). Dimension stone – a rock steady market. Industrial Minerals, 30, 19-27.
  4. Ruedrich, J., & Siegesmund, S. (2007). Salt and ice crystallisation in porous sandstones. Environmental Geology, 52(2), 225-249. https://doi.org/10.1007/s00254-006-0585-6
  5. Rodriguez-Navarro, C., & Doehne, E. (1999). Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and Landforms, 24, 191-209. https://doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G
  6. Godts, S., Orr, S.A., Steiger, M., Stahlbuhk, A., De Kock, T., Desarnaud, J., De Clercq, H., & Cnudde, V. (2023). Salt mixtures in stone weathering. Scientific Reports, 13(1), 13306. https://doi.org/10.1038/s41598-023-40590-y
  7. Cardell, C., Rivas, T., Mosquera, M.J., Birginie, J.M., Moropoulou, A., Prieto, B., Silva, B., & Van Grieken, R. (2003). Patterns of damage in igneous and sedimentary rocks under conditions simulating sea-salt weathering. Earth Surface Processes and Landforms, 28(1), 1-14. https://doi.org/https://doi.org/10.1002/esp.408
  8. Sun, Q., & Zhang, Y. (2019b). Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Engineering Geology, 248, 70-79. https://doi.org/10.1016/J.ENGGEO.2018.11.009
  9. HRN EN 12370:1999. (1999). Natural stones test methods – Determination of resistance to salt crystallization, 11-12, 1-5.
  10. Benavente, D., García Del Cura, M.A., Bernabéu, A., & Ordóñez, S. (2001). Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Engineering Geology, 59(3-4), 313-325. https://doi.org/10.1016/S0013-7952(01)00020-5
  11. Winkler, E.M., & Singer, P.C. (1972). Crystallization pressure of salts in stone and concrete. Geological Society of America Bulletin, 83(11), 3509-3514.
  12. Czinder, B., & Török, Á. (2021). Effects of long-term magnesium sulfate crystallisation tests on abrasion and durability of andesite aggregates. Bulletin of Engineering Geology and the Environment, 80(12), 8891-8901.https://doi.org/10.1007/s10064-019-01600-4
  13. Vázquez, P., Alonso, F.J., Carrizo, L., Molina, E., Cultrone, G., Blanco, M., & Zamora, I. (2013). Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Construction and Building Materials, 41, 868-878. https://doi.org/10.1016/J.CONBUILDMAT.2012.12.026
  14. Fort, R., Bernabeu, A., García del Cura, M.A., López de Azcona, M.C., Ordóñez, S., & Mingarro, F. (2002). Novelda stone: Widely used within the Spanish architectural heritage. Materiales de Construcción, 52(266), 19-32. https://doi.org/10.3989/mc.2002.v52.i266.332
  15. Benavente, D., Cueto, N., Martínez-Martínez, J., García del Cura, M.A., & Cañaveras, J.C. (2007). The influence of petrophysical properties on the salt weathering of porous building rocks. Environmental Geology, 52(2), 215-224. https://doi.org/10.1007/s00254-006-0475-y
  16. Van, T.T., Beck, K., & Al-Mukhtar, M. (2007). Accelerated weathering tests on two highly porous limestones. Environmental Geology, 52(2), 283-292. https://doi.org/10.1007/s00254-006-0532-6
  17. Gomez-Heras, M., & Fort, R. (2007). Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environmental Geology, 52(2), 259-267. https://doi.org/10.1007/s00254-006-0538-0
  18. Rothert, E., Eggers, T., Cassar, J., Ruedrich, J., Fitzner, B., & Siegesmund, S. (2007). Stone properties and weathering induced by salt crystallization of Maltese Globigerina Limestone. Geological Society, London, Special Publications, 271(1), 189-198. https://doi.org/10.1144/GSL.SP.2007.271.01.19
  19. Stefanis, N.-A., Theoulakis, P., & Pilinis, C. (2009). Dry deposition effect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Building and Environment, 44(2), 260-270. https://doi.org/10.1016/j.buildenv.2008.03.001
  20. Tomašić, I. (2008). Sea salts as a most damaging factor of stone construction. Second International Congress Dimension Stones, 299-304.
  21. Briševac, Z., Maričić, A., Kujundžić, T., & Hrženjak, P. (2023). Saturation influence on reduction of compressive strength for carbonate dimension stone in Croatia. Minerals, 13(11), 1364. https://doi.org/10.3390/min13111364
  22. Maričić, A. (2014). Utjecaj svojstava benkovačkoga prirodnoga kamena na njegovu postojanost. Doctoral Thesis. Zagreb, Croatia: University of Zagreb, 167 p.
  23. Zhang, Y., Ma, G., Sun, Q., Ge, Z., Wei, X., Li, Z., & Rui, F. (2024). Experimental and numerical research on the failure pattern and mechanisms of granite disc with a pre-crack after heating and liquid nitrogen cooling. International Journal of Rock Mechanics and Mining Sciences, 174, 105659. https://doi.org/10.1016/J.IJRMMS.2024.105659
  24. Zhang, Y., Ma, G., & Li, X. (2024). Mode-I fracture toughness and damage mechanism of dry and saturated sandstone subject to cryogenic condition. International Journal of Rock Mechanics and Mining Sciences, 180, 105796. https://doi.org/10.1016/J.IJRMMS.2024.105796
  25. Zhang, Y., Gu, Y., & Ma, G. (2024). Mode-I fracture toughness and fracturing damage model for sandstone subjected to cryogenic treatment to -160°C. Rock Mechanics and Rock Engineering, 57, 7929-7943.https://doi.org/10.1007/s00603-024-03915-5
  26. Zhang, Y., Gu, Y., Sun, Q., Rui, F., Ge, Z., & Jia, H. (2024). Influence of microwave irradiation and water-based cooling on the fracturing behavior and failure mode transition of CSTBD granite. Engineering Fracture Mechanics, 296, 109832. https://doi.org/10.1016/J.ENGFRACMECH.2023.109832
  27. Maričić, A., & Tomašić, I. (2016). Some interesting stone properties based on testing of the benkovac platy natural stone products. Global Stone Congress Proceedings Book, 29-38.
  28. Angeli, M., Bigas, J.-P., Benavente, D., Menéndez, B., Hébert, R., & David, C. (2007). Salt crystallization in pores: quantification and estimation of damage. Environmental Geology, 52(2), 205-213. https://doi.org/10.1007/s00254-006-0474-z
  29. Barbera, G., Barone, G., Mazzoleni, P., & Scandurra, A. (2012). Laboratory measurement of ultrasound velocity during accelerated aging tests: Implication for the determination of limestone durability. Construction and Building Materials, 36, 977-983. https://doi.org/10.1016/J.CONBUILDMAT.2012.06.029
  30. Zhang, Y., Zhao, G.-F., Wei, X., & Li, H. (2021). A multifrequency ultrasonic approach to extracting static modulus and damage characteristics of rock. International Journal of Rock Mechanics and Mining Sciences, 148, 104925. https://doi.org/10.1016/j.ijrmms.2021.104925
  31. Buj, O., & Gisbert, J. (2007). Petrophysical characterization of three commercial varieties of Miocene sandstones from the Ebro valley. Materiales de Construcción, 57(287), 63-74. https://doi.org/10.3989/mc.2007.v57.i287.57
  32. Fort, R., Fernández-Revuelta, B., Varas, M.J., Alvarez de Buergo, M., & Taborda-Duarte, M. (2008). Influence of anisotropy on the durability of Madrid-region Cretaceous dolostone exposed to salt crystallization processes. Materiales de Construcción, 58(289-290), 161-178https://doi.org/10.3989/mc.2008.v58.i289-290.74
  33. Dunham, R.J. (1962). Classification of carbonate rocks according to depositional texture, in Hamm. Classification of Carbonate Rocks, 108-121. https://doi.org/10.1306/M1357
  34. Embry, A.F., & Klovan, J.E. (1972). Absolute water depth limits of Late Devonian Paleoecological zones. Geologische Rundschau, 61, 672-686. https://doi.org/10.1007/BF01896340
  35. Folk, R.L. (1959). Practical petrographic classification of limestones. AAPG Bulletin, 43(1), 1-38. https://doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D
  36. Folk, R.L. (1962). Spectral subdivision of limestone types. Classification of Carbonate Rocks, 62-84.
  37. HRN EN 14579:2008. (2008). Natural stone test methods – Determination of sound speed propagation, 3, 1-13.
  38. HRN EN 1926:1999. (1999). Natural stones test methods – Determination of compressive strength, 11-12, 1-17.
  39. Maričić, A., & Tomašić, I. (2013). Properties and durability of Benkovac platy stone. 14th Euroseminar on Microscopy Applied to Building Materials, 87-90.
  40. Mrinjek, E., Pencinger, V., Sremac, J., & Lukšić, B. (2005). The Benkovac stone member of the Promina formation: A Late Eocene succession of storm-dominated shelf deposits. Geologia Croatica, 58(2), 163-184. https://doi.org/10.4154/GC.2005.09
  41. Mrinjek, E., & Vili, P. (2008). The Benkovac stone – A building stone from the Promina Beds: A Late Eocene heterolithic succession of storm-dominated shelf deposits with highly diverse trace fossils. 5th ProGEO International Symposium, 105-125.
  42. Vlahovic, I., Mandic, O., Mrinjek, E., Bergant, S., Cosovic, V., De Leeuw, A., Enos, P., Hrvatovic, H., Maticec, D., & Miksa, G. (n.d.). Marine to continental depositional systems of Outer Dinarides foreland and intra-montane basins (Eocene-Miocene, Croatia and Bosnia and Herzegovina). Journal of Alpine Geology, 54, 405-470.
  43. Kahraman, S., & Yeken, T. (2008). Determination of physical properties of carbonate rocks from P-wave velocity. Bulletin of Engineering Geology and the Environment, 67(2), 277-281. https://doi.org/10.1007/s10064-008-0139-0
  44. Лицензия Creative Commons