Ar-Ar ages and ore-forming material sources of the Na Bop-Pu Sap Pb-Zn Deposit in the Cho Don Area, Northeastern Vietnam
Khuong The Hung1, Pham Trung Hieu2, Ngo Xuan Dac3, Nguyen Duy Hung1
1Hanoi University of Mining and Geology, Hanoi, Vietnam
2University of Science, Ho Chi Minh, Vietnam
3Vietnam Institute of Geosciences and Mineral Resources, Hanoi, Vietnam
Min. miner. depos. 2024, 18(4):80-97
https://doi.org/10.33271/mining18.04.080
Full text (PDF)
      ABSTRACT
      Purpose. This study aims to investigate the ore mineralization characteristics and genesis models and assess the mineral potential of the Na Bop-Pu Sap lead-zinc deposit, which represents a novel deposit type in northeastern Vietnam.
      Methods. This research employs several analytical methods, including microscopic analysis of ore minerals, sulfur and lead isotope analysis of ore sulfide minerals, Ar-Ar dating of sericite samples contemporaneous with sulfide ores, and fluid inclusion studies to determine ore-forming temperatures.
      Findings. Field observations suggest that the ore deposits manifest as Pb-Zn-bearing veins along faults and as strata-bound ore types within early Devonian sedimentary carbonate rocks. Microscopic analysis identifies galena, sphalerite, pyrrhotite, pyrite, and arsenopyrite as ore minerals, accompanied by gangue minerals such as quartz, calcite, and dolomite. Sulfur-isotope values (δ34S) of galena, sphalerite, and pyrite range from +0.10 to +8.49‰ (mean = +4.48‰), suggesting a magmatic origin with a deep source. Lead isotope ratios of galena (206Pb/204Pb: 18.451-18.651, 207Pb/204Pb: 15.685-15.836, 208Pb/204Pb: 38.909-39.501) point to an upper crustal source. Ar-Ar dating of sericite yields plateau ages of 237.1 ± 2.3 Ma and 242.6 ± 2.4 Ma, correlating with the timing of lead-zinc mineralization, as indicated by the syntectonic texture between sericite minerals and sulfide ores. Fluid inclusion studies on calcite from galena-hosted veins suggest moderate temperatures (201-245°C) and salinities (4.65-8.00 wt.% NaCl equiv.), indicative of evolving 2O – NaCl systems and variable physicochemical conditions. These findings classify the Na Bop-Pu Sap deposit as an epithermal-type deposit.
      Originality. The Na Bop-Pu Sap Pb-Zn deposit in northern Bac Kan Province, Vietnam, is one of the largest deposits in the Cho Don area. It is notable for its significant reserves and unique metal combination. Despite extensive knowledge of Pb-Zn mineralization, the timing and origin of ore-forming fluids remain poorly understood.
      Practical implications. This study provides insights into the genesis and spatio-temporal evolution of Pb-Zn mineralization in the Na Bop-Pu Sap deposit within the Cho Don area.
      Keywords: Na Bop-Pu Sap deposit, Cho Don area, Pb-Zn mineralization, lead, sulfur, Ar-Ar isotope data
      REFERENCES
- Sangster, D.F. (1996). Carbonate-hosted lead-zinc deposits: 75th anniversary volume. Littleton, United States: Society of Economic Geologists, 654 p. https://doi.org/10.5382/SP.04
- Tri, T.V., & Khuc, V. (2011). Geology and earth resources of Vietnam. Hanoi, Vietnam: Publishing House for Science and Technology, 634 p.
- Hoa, T.T., Anh, T.T., Phuong, N.T., Izokh, A.E., Polyakov, G.V., Balykin, P.A., Ching-Ying Lan, Thanh, H.H., Nien, B.A., & Dung, P.T. (2004). Gabbro-syenite associations of East Bac Bo structures: evidence of intra-plate magmatism? Journal of Geology, Series B, 23, 12-25.
- Binh, D.Q., Cuong, D.Q., Chinh, K.T., Hung, N.M., & Que, N.T. (2005). Report on prospective results of lead-zinc, gold, and accompanying minerals of the Phia Da-Na Cang area, Cao Bang-Bac Kan provinces. Hanoi, Vietnam: Vietnam Institute of Geosciences and Mineral Resources, 193 p.
- Hoa, T.T., Izokh, A.E., Polyakov, G.V., Borisenko, A.S., Anh, T.T., Balykin, P.A., Phuong, N.T., Rudnev, S.N., Van, V.V., & Nien, B.A. (2008). Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russian Geology and Geophysics, 49, 480-491. https://doi.org/10.1016/j.rgg.2008.06.005
- Binh, D.Q., Cuong, D.Q., Dong, N.C., De, P.Q., Linh, N.T.H., Que, N.T., & San, V.T. (2010). Report on prospective results of copper, lead-zinc, and accompanying minerals of the Quang Ba-Pac Nam area, Ha Giang province. Hanoi, Vietnam: Vietnam Institute of Geosciences and Mineral Resources, 179 p.
- Hung, K.T., Sang, P.N., Phuong, N., Linh, V.T., & Sang, B.V. (2020). Statistical evaluation of the geochemical data for prospecting polymetallic mineralization in the Suoi Thau – Sang Than region, Northeast Vietnam. Geology, Geophysics and Environment, 6(4), 285-299. https://doi.org/10.7494/geol.2020.46.4.285
- Vinh, N.K. (1982). Radioactive age and metallogenic specialization of Phia Bioc granite complex based on geochemical and lead isotope data. Journal of Geology, 154, 23-25.
- Niem, N.V. (2013). Establishing a scientific basis for constructing models of lead-zinc ore genesis in Northern Vietnam. Project. Hanoi, Vietnam: Ministry of Natural Resources and Environment.
- Hoa, T.T., Anh, T.T., Dung, P.T., Hung, T.Q., Nien, B.A, Hieu, T.V., & Can, P.N. (2010). By-products in lead-zinc and copper ores of Northeast Vietnam. Journal of Earth Sciences, 32(4), 289-298.
- Tung, T.T., Tuan, L.C., Binh, D.Q., Quang, N.T., & Giang, N.T. (2024). Sedimentary exhalative Pb-Zn deposit model of the Ban Lin – Phia Dam ore range, Vietnam. Mining of Mineral Deposits, 18(3), 25-32.https://doi.org/10.33271/mining18.03.025
- Hung, K.T., Tung, T.D., Binh, D.Q., Sang, P.N., Cuc, N.T., Linh, N.T.H., & Tin, Q.D. (2021). Sulfur and lead isotope geochemical characteristics of Pb-Zn deposits in the Khau Loc zone, northeastern Vietnam, and their significance. Journal of Geology, Geophysics and Environment, 47(3), 143-157. https://doi.org/10.7494/geol.2021.47.3.143
- Anh, T.T., Dung, P.T., Hoa, T.T., Nien, B.A., Hung, T.Q., Phuong, N.T., Anh, P.L., Can, P.N., Ly, V.H., Hieu, T.V., Lam, T.H., Hang, H.V., & Thuong, V.T. (2010). Enhancing mineral extraction efficiency and environmental protection: Investigating associated components in basic metal and rare earth mineral deposits in northern Vietnam. State Science & Technology Programme, code KC.08.24/06-10. Hanoi, Vietnam: 459 p.
- Hung, K.T., Truong, L.X., Awadh, S.M., Thang, T.V., Dac, N.X., Du, N.K. (2023). Geology, Pb and S Isotope Geochemistry, and Genesis of the NPD in the Cho Don area, Northeastern Vietnam. Iraqi Geological Journal, 56(2), 164-177. https://doi.org/10.46717/igj.56.2C.13ms-2023-9-19
- Dovjikov, A.E., My, B.P., Vasilevskaya, E.D., Zhamoida, A.I., Ivanov, G.V., Izokh, E.P., Huu, L.D., Mareichev, A.M., Tien, N.V., Tri, N.T., Luong, T.D., Quang, P.V., & Long, P.D. (1965). Geology of Northern Vietnam. Hanoi, Vietnam: Nauka i Tekhnika.
- Tri, T.V., Uy, N.D., Hiep, N., Hoai, H.D., Quy, H.H., Sang, N.T., San, N., Thanh, L., Thuan, C.X., Thuc, P.V., & Tuyet, D. (1977). A tectonic sketch of the northern Vietnam at scale of 1:1000000. Journal of Geology, 123, 1-2.
- Thanh, N.V., An, N.P., Duan, P.V., Hoe, P.H., & Son, V.M. (2002). New data on the Rb-Sr isotopic age of granitoids from the Song Hin complex. Journal of Geology, Series B, 19-20, 103-107.
- Anh, P.L., & Hang, H.V. (2005). The Late Permian age of S-granite from Tam Tao massif. Journal of Earth Sciences, 27(2), 115-124.
- Izokh, A.E., Polyakov, G.V., Hoa, T.T., Balykin, P.A., & Phuong, N.T. (2005). Permian-Triassic ultramafic-mafic magmatism of northern Vietnam and southern China as expression of plume magmatism. Russian Geology and Geophysics, 46(9), 922-932.
- Polyakov, G.V., Shelepaev, R.A., Hoa, T.T., Izokh, A.E., Balykin, P.A., Phuong, N.T., Hung, T.Q., & Nien, B.A. (2009). The Nui Chua layered peridotite-gabbro complex as manifestation of Permo-Triassic mantle plume in northern Vietnam. Russian Geology and Geophysics, 50(6), 501-516. https://doi.org/10.1016/j.rgg.2008.10.002
- Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., & Zhmodik, S.M. (2010). A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russian Geology and Geophysics, 51(9), 903-924. https://doi.org/10.1016/j.rgg.2010.08.002
- Lepvrier, C., Faure, M., Voung, N.V., Tich, V.V., Lin, W., Thang, T.T., & Phuong, T.H. (2011). North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences, 41, 56-68. https://doi.org/10.1016/j.jseaes.2011.01.002
- Nevolko, P.A., Dung, P.T., Fominykh, P.A., Hoa, T.T., Anh, T.T., & Phuong, N.T. (2019). Origin of the intrusion-related Lang Vai gold-antimony district (Northeastern Vietnam): Constraints from fluid inclusions study and C-O-S-Pb isotope systematics. Ore Geology Reviews, 104, 114-13. https://doi.org/10.1016/j.oregeorev.2018.10.019
- Truong, N.X. (1995). Research on prospecting and estimation results of Pb-Zn ore mineralization in Na Bop deposit, Cho Don area, Bac Kan province. Hanoi, Vietnam: Center for Information and Archives of Geology.
- Quoc, N.K. (2000). Report on results of geological mapping and mineral investigation of Bac Kan sheet at 1:200000 scale. Hanoi, Vietnam: Geological Department of Vietnam.
- Bac, D.T. (2011). Research on characteristics and distribution regularities of lead-zinc metallogenic formations in the Viet Bac area, Northern Vietnam. PhD Thesis. Hanoi, Vietnam: Hanoi University of Mining and Geology.
- Sang, B.V. (2010). Report on lead-zinc ore exploration in the Na Bop-Pu Sap area, Chon Don district, Bac Kan province. Hanoi, Vietnam: General Department of Geology and Minerals of Vietnam.
- Lepvrier, C., Maluski, H., Tich, V.V., Leyreloup, A., Phan, V.T., & Nguyen, V.V. (2004). The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kon Tum Massif): Implications for the geodynamic evolution of Indochina. Tectonophysics, 393, 87-118. https://doi.org/10.1016/j.tecto.2004.07.030
- Hung, K.T. (2010). Overview of magmatism in northwestern Vietnam. Annales Societatis Geologorum Poloniae, 80(2), 185-226.
- Shellnutt, J.G., Jahn, B.-M., & Zhou, M.-F. (2011). Crustal-derived granites in the Panzhihua region, SW China: Implications for felsic magmatism in the Emeishan Large Igneous province. Lithos, 123, 145-157. https://doi.org/10.1016/j.lithos.2010.10.016
- Roger, F., Maluski, H., Lepvrier, C., Van, T.V., & Paquette, J.-L. (2012). LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern Vietnam – Geodynamical implications. Journal of Asian Earth Sciences, 48, 72-82. https://doi.org/10.1016/j.jseaes.2011.12.012
- Wang, C.Y., Zhou, M.F., & Qi, L. (2007). Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chemical Geology, 243 (3-4), 317-343. https://doi.org/10.1016/j.chemgeo.2007.05.017
- Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 1-644. https://doi.org/10.1515/9781501508271
- Van den Kerkhof, A.M., & Hein, U.F. (2001). Fluid inclusion petrography. Lithos, 55, 27-47. https://doi.org/10.1016/S0024-4937(00)00037-2
- Borisenko, A.S. (1977). The study of the salt composition of solutions of gas-liquid inclusions in minerals by cryometry. Geology and Geophysics, 8, 16-27.
- Bodnar, R.J., & Vityk, M.O. (1994). Interpretation of micro-thermometric data for H2O-NaCl fluid inclusions. Fluid Inclusions in Minerals: Methods and Application, 117-130.
- Brown, P.E. (1989). FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74, 1390-1393.
- Fritz, P., Drimmie, R.J., & Nowicki, V.K. (1974). Preparation of sulfur dioxide for mass spectrometer analyses by combustion of sulfides with copper oxide. Analytical Chemistry, 46(1), 164-166. https://doi.org/10.1021/ac60337a044
- Ishihara, S., Anh, T.T., Yasushi, W., & Hoa, T.T. (2010). Chemical characteristics of lead-zinc ores from North Vietnam, with a special attention to the in contents. Bulletin of the Geological Survey of Japan, 61, 307-23. https://doi.org/10.9795/bullgsj.61.307
- Steiger, R.H., & Jager, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359-362. https://doi.org/10.1016/0012-821X(77)90060-7
- Bakker, R.J. (1999). Optimal interpretation of microthermometrical data from fluid inclusions: Thermodynamic modelling and computer programming. Habilitation Thesis. Heidelberg, Germany: University Heidelberg, 50 p.
- Bakker, R.J. (2018). AqSo_NaCl: Computer program to calculate P-T-V-X properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Computers and Geosciences, 115, 122-133. https://doi.org/10.1016/j.cageo. 2018.03.003
- Shao, J.L., & Mei, J.M. (1986). On the study of typomorphic characteristics of mineral inclusion in the gold deposit from volcanic terrain in Zhejiang and its genetic and prospecting significance. Mineral Rocks, 3, 103-111.
- Sibson, R.H. (2001). Seismogenic framework for hydrothermal transport and ore deposition. Reviews in Economic Geology, 14, 25-50. https://doi.org/10.5382/Rev.14.02
- Sibson, R.H. (2004). Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. Journal of Structural Geology, 26, 1127-1136. https://doi.org/10.1016/j.jsg.2003.11.003
- Ohmoto, H. (1972). Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67, 551-579. https://doi.org/10.2113/gsecongeo.67.5.551
- Pirajno, F. (2009). Hydrothermal processes and mineral systems. Dordrecht, the Netherlands: Springer, 1249 p. https://doi.org/10.1007/978-1-4020-8613-7
- Duan, J., Tang, J., & Lin, B. (2016). Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals. Ore Geology Reviews, 78, 58-68. https://doi.org/10.1016/j.oregeorev.2016.03.019
- Gill, S., Piercey, S., Layne, G.D., & Piercey, G.D. (2019). Sulphur and lead isotope geochemistry of sulphide minerals from the Zn-Pb-Cu-Ag-Au Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, Canada. Ore Geology Reviews, 104, 422-435. https://doi.org/10.1016/j.oregeorev.2018.11.008
- Coleman, M.L. (1977). Sulphur isotopes in petrology. Journal of the Geological Society, 133, 593-608. https://doi.org/10.1144/gsjgs.133.6.0593
- Claypool, G.E., Helser, W.T., Kaplan, I.R., Sakai, H., & Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199-260. https://doi.org/10.1016/0009-2541(80)90047-9
- Chambers, L.A. (1982). Sulfur isotope study of a modem intertidal environment and the interpretation of ancient sulfides. Geochimica et Cosmochimica Acta, 46, 721-728. https://doi.org/10.1016/0016-7037(82)90023-0
- Sakai, H., Casadevall, T.J., & Moore, J.G. (1982). Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii. Geochimica et Cosmochimica Acta, 46, 729-738. https://doi.org/10.1016/0016-7037(82)90024-2
- Kerridge, J.F., Haymon, R.M., & Kastner, M. (1983). Sulfur isotope systematics at the 21oN site, East Pacific Rise. Earth and Planetary Science Letters, 66, 91-100. https://doi.org/10.1016/0012-821X(83)90128-0
- Ueda, A., & Sakai, H. (1984). Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc. Geochimica et Cosmochimica Acta, 48, 1837-1848. https://doi.org/10.1016/0016-7037(84)90037-1
- Chaussidon, M., Albarede, F., & Sheppard, S.M.F. (1989). Sulfur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 144-156. https://doi.org/10.1016/0012-821X(89)90042-3
- Meinert, L.D. (1992). Skarns and skarn deposits. Geoscience Canada, 19, 145-162.
- Meinert, L.D., Dipple, G.M., & Nicolescu, S. (2005). World skarn deposits. Economic Geology: 100th Anniversary Volume, 299-336.https://doi.org/10.5382/AV100.11
- Ohmoto, H., & Rye, R.O. (1979). Isotopes of sulfur and carbon. Geochemistry of Hydrothermal Ore Deposits, 509-567.
- Eldridge, C.S., Compston, W., Williams, I.S., Both, R.A., Walshe, J.L., & Ohmoto, H. (1988). Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion-microprobe, SHRIMP: I. An example from the Rammelsberg orebody. Economic Geology, 83, 443-449. https://doi.org/10.2113/gsecongeo.84.2.453
- Kerridge, J.F., Chang, S., & Shipp, R. (1988). Deuterium exchange during acid-demineralization. Geochimica et Cosmochimica Acta, 52, 2251-2255. https://doi.org/10.1016/0016-7037(88)90127-5
- Naylor, H., Turrier, P., Vaughan, D.J., Boyce, A.J., & Fallick, A.E. (1989). Genetic studies of redbed mineralization in the Triassic of the Cheshire basin, northwest England. Journal of the Geological Society, 146, 685-699. https://doi.org/10.1144/gsjgs.146.4.0685
- Thorpe, R.I. (1999). The Pb isotope linear array for volcanogenic massive sulphide deposits of the Abitibi and Wawa subprovinces, Canada Shield. The Giant Kid Creek Volcanogenic Massive Sulphide Deposit, Western Abitibi Subprovince, Canada: Economic Geology Monograph, 10, 555-576. https://doi.org/10.5382/Mono.10.25
- Zartman, R.E., & Doe, B.R. (1981). Plumbotectonics – The model. Tectonophysics, 75, 135-162. https://doi.org/10.1016/0040-1951(81)90213-4
- Allegre, C.J., Lewin, E., & Dupre, B. (1988). A coherent crust-mantle model for the uranium-thorium-lead isotopic system. Chemical Geology, 70, 211-234. https://doi.org/10.1016/0009-2541(88)90094-0
- Snee, L.W. (2002). Argon thermochronology of mineral deposits: A review of analytical methods, formulations, and selected applications. U.S. Geological Survey Bulletin, 2194, 1-39. https://doi.org/10.3133/b2194
- Simmons, S.F., White, N.C., & John, D.A. (2005). Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 100, 485-522. https://doi.org/10.5382/AV100.16
- Large, R.R., Bull, S.W., Cooke, D.R., & McGoldrick, P.J. (1998). A genetic model for the HYC deposit, Australia, based on regional sedimentology, geochemistry and sulfide-sediment relationship. Economic Geology, 93, 1345-1368.https://doi.org/10.2113/gsecongeo.93.8.1345