Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Experimental studies of the joint process “hydrotransport – oil agglomeration of coal”

Volodymyr Biletskyi1, Tetiana Oliinyk2, Serhii Pysmennyi2, Liudmyla Skliar2, Serhii Fedorenko2, Serhii Chukharev3

1Kharkiv National University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

2Kryvyi Rih National University, Kryvyi Rih, Ukraine

3National University of Water and Environmental Engineering, Rivne, Ukraine


Min. miner. depos. 2024, 18(4):71-79


https://doi.org/10.33271/mining18.04.071

Full text (PDF)


      ABSTRACT

      Purpose. Development of highly effective dewatering methods along with preservation of technological properties of hydro-transported coal is one of the key tasks for improving modern pipeline hydrotransportation systems. Accordingly, the purpose of this study is to develop the models of “pressure loss in the pipeline – hydrotransport velocity” i = f (V) for the “water-coal-fuel oil” mixtures of different compositions, which reflect regularities of the combined process of “hydro-transport – oil agglomeration of coal”.

      Methods. Physical modelling of the combined process of “hydrotransport – oil agglomeration of coal” was conducted under the test-field conditions involving specialized hydrotransport installations, i.e. a coal oil granulation stand and a hydraulic study stand. Relying on the experimental data, the trend curves were constructed, for each of which corresponding polynomial functions were determined.

      Findings. In terms of test field, experimental dependencies of head losses in the pipeline i = f (V) for the water-coal-oil agglomeration slurry were obtained based on the processing of the resulting family of statistical models for a hydrotransportation process of the indicated slurry.

      Originality. For the first time, polynomial regularities have been obtained that demonstrate the dependence of head losses in the pipeline i = f (V) on the composition and structure of solid and liquid phases of the water-coal-oil-agglomeration slurry.

      Practical implications. The research results can be used while developing the combined technology “hydrotransport – oil agglomeration of coal” and for designing corresponding industrial or main coal pipelines.

      Keywords: hydrotransport, coal, oil agglomeration, modelling, test hydrotransportation system


      REFERENCES

  1. Chen, F., Yu, H., Bian, Z., & Yin, D. (2021). How to handle the crisis of coal industry in China under the vision of carbon neutrality. Journal of China Coal Society, 46(6), 1808-1820. https://doi.org/10.13225/j.cnki.jccs.2021.0368
  2. Kaczmarek, J., Kolegowicz, K., & Szymla, W. (2022). Restructuring of the coal mining industry and the challenges of energy transition in Poland (1990-2020). Energies, 15(10), 3518. https://doi.org/10.3390/en15103518
  3. Satybaldiyeva, D., Mukhanova, G., Tymbayeva, Z., Tyshkanbayeva, M., & Bolatkyzy, S. (2023). Applying the expert method to determine a company’s strategic goals. Transport Problems, 18(2), 123-132. https://doi.org/10.20858/tp.2023.18.2.11
  4. Volkov, V., Taran, I., Volkova, T., Pavlenko, O., & Berezhnaja, N. (2020). Determining the efficient management system for a specialized transport enterprise. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 185-191. https://doi.org/10.29202/nvngu/2019-2/8
  5. Sładkowski, A., Utegenova, A., Kolga, A.D., Gavrishev, S.E., Stolpovskikh, I., & Taran, I. (2019). Improving the efficiency of using dump trucks under conditions of career at open mining works. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 36-42. https://doi.org/10.33271/nvngu/2020-4/185
  6. Svitlyy, Yu.G., Grechanyy, A.N., & Litovkin, V.V. (1996). O razvitii i primenenii vodougol’nykh tekhnologiy v toplivno-energeticheskom komplekse Ukrainy. Energetika i Elektrifikatsiya, 4, 1-5.
  7. Svitlyy, Yu.H., & Krut, O.A. (2010). Hidravlichnyi transport tverdykh materialiv. Donetsk, Uktaina: Skhidnyi vydavnychyi dim, 268 s.
  8. Brolick, H.J. (1994). The Black Mesa coal/water slurry pipeline system. Proceedings of the 19 International Technical Conference on Coal Utilization and Fuel Systems: The Greening of Coal, 1-6.
  9. Buktukov, N.S., Gumennikov, Y.S., Moldabayeva, G.Z., Buktukov, B.Z., & Yesbergenova, E.S. (2024). New solutions for mechanized small diameter shaft sinking for residual oil production. SOCAR Proceedings, 1, 81-86. https://doi.org/10.5510/OGP20240100944
  10. Yelemessov, K., Nauryzbayeva, D., Bortebayev, S., Baskanbayeva, D., & Chubenko, V. (2021). Efficiency of application of fiber concrete as a material for manufacturing bodies of centrifugal pumps. E3S Web of Conferences, 280, 07007. https://doi.org/10.1051/e3sconf/202128007007
  11. Volkov, A.P., Buktukov, N.S., & Kuanyshbaiuly, S. (2022). Safe and effective methods for mining thin tilt and steeply dipping deposits with ore drawing via mud flow. Gornyi Zhurnal, 4, 86-91. https://doi.org/10.17580/gzh.2022.04.13
  12. Lesmana, A., & Hitch, M. (2011). Heavy media coal hydro-transport in Malinau, Indonesia: A process study. International Journal of Mining and Mineral Engineering, 3(1), 1-15. https://doi.org/10.1504/IJMME.2011.041445
  13. Babets, Ye.K., Bielov, O.P., Shustov, O.O., Barna, T.V., & Adamchuk A.A. (2019). The development of technological solutions on mining and processing brown coal to improve its quality. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 36-44. https://doi.org/10.29202/nvngu/2019-6/6
  14. Koveria, A., Kieush, L., Hrubyak, A., & Kotsyubynsky, V. (2019). Properties of Donetsk basin hard coals and the products of their heat treatment revealed via Mossbauer spectroscopy. Petroleum and Coal, 61(1), 160-168.
  15. Yelemessov, K., Krupnik, L., Bortebayev, S., Beisenov, B., Baskanbayeva, D., & Igbayeva, A. (2020). Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web of Conferences, 168, 00018. https://doi.org/10.1051/e3sconf/202016800018
  16. Kuandykov, T.A., Karmanov, T.D., Kuldeyev, E.I., Yelemessov, K.K., & Kaliev, B.Z. (2022). New technology of uncover the ore horizon by the method of in-situ leaching for uranium mining. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Science, 3(453), 142-154. https://doi.org/10.32014/2022.2518-170X.186
  17. Yelemessov, K.K., Baskanbayeva, D.D., Sabirova, L.B., & Akhmetova, S.D. (2023). Justification of an acceptable modern energy-efficient method of obtaining sodium silicate for production. IOP Conference Series: Earth and Environmental Science, 1254(1), 012002. https://doi.org/10.1088/1755-1315/1254/1/012002
  18. Krupnik, L., Yelemessov, K., Bortebayev, S., & Baskanbayeva, D. (2018). Studying fiberreinforced concrete for casting housing parts of pumps. Eastern-European Journal of Enterprise Technologies, 6(12(96)), 22-27. https://doi.org/10.15587/1729-4061.2018.151038
  19. Sokolova, Ye.M., Belov, K.A., Antonova L.I., & Ustinovskaya, S.A. (1982). Vliyanie prodolzhitelnosti kontaktirovaniya uglya s vodoy na effektivnost’ mekhanicheskikh metodov yego obezvozhivaniya. Khimiya Tverdogo Topliva, 2, 104-106.
  20. Svitlyy, Yu.G., Karliva, T.V., Belov, K.A., Sokolova, Ye.M., & Ustinovskaya, S.A. (1982). Obezvozhivaniye uglya pri transportirovanii po magistral’nym truboprovodam. Obogashchenie Poleznykh Iskopaemykh, 1, 49-53.
  21. Svitlyy, Yu.G., Karlina, T.V., & Sokolova, Ye.M. (1983). Puti intensifikatsii obezvozhivaniya uglya, transportiruemogo po magistral’nym truboprovodam. Ugol’ Ukrainy, 2, 38-39.
  22. Korshchunov, V.A. (1974). Issledovanie vliyaniya gidravlicheskogo transportirovaniya na svoystva koksuyushchikhsya ugley Kuzbassa i kachestvo koksa, 33 s.
  23. Biletskyi, V., Shendrik, T., & Sergeev, P. (2012). Derivatography as the method of water structure studying on solid mineral surface. Geomechanical Processes During Underground Mining, 191-194. https://doi.org/10.1201/b13157-32
  24. Kharada, T., & Matsuo, T. (1982). Ahlomeratsiia u ridynakh. Nikhon Koh’o Kaysi, 1134, 714-722.
  25. Biletsky, V., Molchanov, P., Sokur, M., Gayko, G., Savyk, V., Orlovskyy, V., Liakh, M., Yatsyshyn, T., & Fursa, R. (2017). Research into the process of preparation of Ukrainian coal by the oil aggregation method. Eastern-European Journal of Enterprise Technologies, 3(5(87)), 45-53. https://doi.org/10.15587/1729-4061.2017.104123
  26. Fyk, M., Biletskyi, V., Fyk, I., Bondarenko, V., & Al-Sultan, M.B. (2019). Improvement of an engineering procedure for calculating the non-isothermal transportation of a gas-liquid mixture. Eastern-European Journal of Enterprise Technologies, 3(5(99)), 51-60. https://doi.org/10.15587/1729-4061.2019.167198
  27. Abakay Temel, H., Bozkurt, V., & Majumder, A.K. (2009). Selective oil agglomeration of lignite. Energy & Fuels, 23(2), 779-784.https://doi.org/10.1021/ef8005096
  28. Singh, A.V., Bhargava, P.K., Singh, R., & Menaria, K.L. (2012). The selective oil agglomeration of combustibles in fines of low grade lignite of Barmer Rajasthan (India). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(16), 1491-1496. https://doi.org/10.1080/15567036.2010.485174
  29. Lin, S., Chen, B., Chen, W., Li, W., & Wu, S. (2012). Study on clean coal technology with oil agglomeration in Fujian Province. Procedia Engineering, 45, 986-992. https://doi.org/10.1016/j.proeng.2012.08.270
  30. Rafaqat, U., Akhtar, J., Sheikh, N.U., & Munir, S. (2015). Cleaning of Dukki (Baluchistan) coal by oil agglomeration process. International Journal of Oil, Gas and Coal Technology, 9(1), 79-88. https://doi.org/10.1504/ijogct.2015.066948
  31. Nikolenko, N.V., Taran, I.B., Plaksienko, I.L., Vorob’ev, N.K., & Oleinik, T.A. (1999). Adsorption of organic compounds from aqueous solutions on silica gel and α-aluminum oxide: A charge control model. Colloid Journal, 4(61), 525-529.
  32. Nikolenko, N.V., Taran, I.B., Plaksienko, I.L., Vorob’ev, N.K., & Oleinik, T.A. (1997). Adsorption of organic compounds from aqueous solutions on a silica gel and α-alumina. Colloid Journal, 4(59), 514-519.
  33. Beletskiy, V.S., Boreyko, M.K., Sergeyev, P.V., & Zozulya, I.D. (1989). Elektrokineticheskie svoystva gidravlicheski transportiruyemogo uglya. Khimiya Tverdogo Topliva, 5, 121-124.
  34. Erdman, W., Rolling, R., & Leininger, D. (1978). Möglichkeiten der Entwässerung hydraulisch geförderter Steinkohlen. Aufbereitungs-Technik, 19(8), 357-362.
  35. Yelishevich, A.T., Beletskiy, V.S., Rybachenko, V.I., & Gonchar, N.P. (1989). Issledovanie poverkhnostnykh svoystv koksuyushchikhsya ugley v protsesse dal’nego gidrotransporta metodom IK-spektroskopii. Khimiya Tverdogo Topliva, 2, 52-54.
  36. Rigby, G.R., & Callcot, T.G. (1978). Slurry benefication and transportation system offers advantages for handling coking coals. Australian Mining, 2, 18-20.
  37. Biletskyi, V., Desna, N., Orlovskyi, V., & Biletskyi, V. (2024). Research of surface physical and chemical properties of coal in the process of its hydrotransportation. Petroleum & Coal, 66(2).
  38. Beletskij, V.S., & Nikitin, I.N. (2003). Variation of technological properties of coals during hydraulic transportation. Koks i Khimiya, 3, 12-17.
  39. Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique Archives, 134, 977-982. https://doi.org/10.1051/jp4:2006134149
  40. Chubenko, V., Khinotskaya, A., Yarosh, T., Saithareiev, L., & Baskanbayeva, D. (2022). Investigation of energy-power parameters of thin sheets rolling to improve energy efficiency. IOP Conference Series: Earth and Environmental Science, 1049, 012051. https://doi.org/10.1088/1755-1315/1049/1/012051
  41. Abdoldina, F., Nazirova, A., Dubovenko, Y., & Umirova, G. (2020). On the solution of the gravity direct problem for a sphere with a simulated annealing approach. International Multidisciplinary Scientific GeoConference, 20(2.1), 239-245. https://doi.org/10.5593/sgem2020/2.1/s07.031
  42. Vykladena zayavka 58 – 104997. (1983). Prystriy hrudkuvannya vuhillya u truboprovodi. Yaponiya. MKI3 C10L5/00.
  43. Kabakova, L. (2017). Sumishchenyy protses “mahistralnyi hidrotransport – masliana ahlomeratsiia” vuhillia yak optymalna tekhnolohiia. Zbahachennia Korysnykh Kopalyn, 66(107), 131-136.
  44. Onyshchenko, O., Kohanuk, O., & Oleynik, T. (2019). Application of the direct optical method for determination of granulometric composition for quality control processes in coal dewatering. XIX International Coal Preparation Congress, 2, 254-262.
  45. Pysmennyi, S., Chukharev, S., Peremetchy, A., Fedorenko, S., & Matsui, A. (2023). Study of stress concentration on the contour of underground mine workings. Inżynieria Mineralna, 1(1(51)), 69-78. http://doi.org/10.29227/IM-2023-01-08
  46. Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, 280, 08001. https://doi.org/10.1051/e3sconf/202128008001
  47. Pysmennyi, S., Chukharev, S., Kourouma, I., Kalinichenko, V., & Matsui, A. (2023). Development of technologies for mining ores with instable hanging wall rocks. Inżynieria Mineralna, 1(1(51)), 103-112. http://doi.org/10.29227/IM-2023-01-13
  48. Morkun, V., Gubin, G., Oliinyk, T., Morkun, N., & Oliinyk, M. (2017). High-energy ultrasound to improve the quality of purifying the particles of iron ore in the process of its enrichment. Eastern-European Journal of Enterprise Technologies, 6(12(90)), 41-51. https://doi.org/10.15587/1729-4061.2017.118448
  49. Лицензия Creative Commons