Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Hydro-ecological monitoring of heavy metal pollution of water bodies in the Western Bug River basin within the mining-industrial region

Vasyl Popovych1, Viktor Skrobala2, Oleh Tyndyk1, Olesya Kaspruk2

1Lviv State University of Life Safety, Lviv, Ukraine

2Ukrainian National Forestry University, Lviv, Ukraine


Min. miner. depos. 2024, 18(4):139-152


https://doi.org/10.33271/mining18.04.139

Full text (PDF)


      ABSTRACT

      Purpose. This research aims to explore the peculiarities of chemical pollution with heavy metals of water in rivers and water bodies in the Chervonohrad mining-industrial region depending on the distance to the source of pollution and the type of landscape, as well as to analyze the general trends in the seasonal dynamics of chemical element concentration.

      Methods. The paper uses statistical processing of the chemical pollution parameters of water and soil, such as correlation analysis and Data Mining methods. The similarity of ecotopes and grouping of chemical elements is assessed using cluster analysis. Multidimensional spatial ordination of ecotopes is described using geochemical indicators and graphical visualization based on Principle Component Analysis.

      Findings. The highest level of pollution during the entire monitoring season was observed in water bodies at the foot of the Mezhyrichanska Mine waste heap near the city of Chervonohrad. Among the river bodies, the worst water condition in terms of heavy metal pollution was found in the Rata River (Silets village), which is located in the zone of influence of mining enterprises. The maximum excess of heavy metal content in water in seasonal dynamics in all sites is characterized by April variant of water samples. The analysis of the dependence between the concentrations of chemical elements indicates the presence of a close relationship between many parameters.

      Originality. For the first time, it has been found that the multidimensional ordination of water bodies on the axes of complex geochemical gradients of the environment reflects the seasonal dynamics of the pollution level of natural water bodies with heavy metals within the mining-industrial region.

      Practical implications. Based on the data obtained on the heavy metal content in water of natural water bodies, it is possible to predict the pollution level and implement measures to prevent the impact of negative factors on water quality. Knowing the geochemical conditions of ecotopes in a certain period of time, it is possible to determine their position in the ecological space on complex gradients of the medium, to predict the stability and possible changes in vegetation, fauna and microflora due to environmental pollution.

      Keywords: heavy metals, ecotope, complex gradient of the medium, multidimensional ordination of ecotopes, mathematical modeling, ecological safety, technogenic pond


      REFERENCES

  1. Directive, C. (1998). On the quality of water intended for human consumption. Official Journal of the European Communities, 330, 32-54.
  2. Moore, H.L. (2015). Global prosperity and sustainable development goals. Journal of International Development, 27(6), 801-815. https://doi.org/10.1002/jid.3114
  3. Popovych, V., & Voloshchyshyn, A. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436), 230-237. https://doi.org/10.32014/2019.2518-170X.118
  4. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 169-172. https://doi.org/10.1201/b16354-29
  5. Petlovanyi, M., Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2021). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572-1582.
  6. Popovych, V., & Gapalo, A. (2021). Monitoring of ground forest fire impact on heavy metals content in edafic horizons. (2021). Journal of Ecological Engineering, 22(5), 96-103. https://doi.org/10.12911/22998993/135872
  7. Petlovanyi, M., Sai, K., Malashkevych, D., Popovych, V., & Khorolskyi, A. (2022). Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, 1156, 187693. https://doi.org/10.1088/1755-1315/1156/1/012007
  8. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43
  9. Lewińska-Preis, L., Szram, E., Fabiańska, M.J., Nádudvari, A., Misz-Kennan, M., Abramowicz, A., Kruszewski, L., & Kita, A. (2021). Selected ions and major and trace elements as contaminants in coal-waste dump water from the Lower and Upper Silesian Coal Basins (Poland). International Journal of Coal Science & Technology, 8, 790-814. https://doi.org/10.1007/s40789-021-00421-9
  10. Agboola, O., Babatunde, D.E., Fayomi, O.S.I., Sadiku, E.R., Popoola, P., Moropeng, L., Yahaya, A., Mamudu, O.A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. https://doi.org/10.1016/j.rineng.2020.100181
  11. Adeoti, O.S., Kandasamy, J., & Vigneswaran, S. (2024). Sustainability framework for water infrastructure development in Nigeria: A modelling approach. Water Supply, 24(8), 2933-2945. https://doi.org/10.2166/ws.2024.193
  12. Allia, Z., Lalaoui, M., & Chebbah, M. (2024). Spatial and seasonal assessment of surface water quality for domestic use in a semi-arid area of the Upper Kebir Sub-basin, NE Algeria. Water Supply, 24(8), 2946-2962. https://doi.org/10.2166/ws.2024.182
  13. Zdravković, A., Cvetković, V., Šarić, K., Pačevski, A., Rosić, A., Erić, S. (2020). Waste rocks and medieval slag as sources of environmental pollution in the area of the Pb-Zn Mine Rudnik (Serbia). Journal of Geochemical Exploration, 218, 106629. https://doi.org/10.1016/j.gexplo.2020.106629
  14. Keskin, T.E., & Özler, E. (2020). Heavy metal contamination in groundwater and surface water due to active Pb-Zn-Cumine tails and water-rock interactions: A case study from the Küre mine area (Turkey). Turkish Journal of Earth Sciences, 29(6), 878-895. https://doi.org/10.3906/yer-2001-3
  15. Mambou Ngueyep, L.L., Takougang Kingni, S., Ayiwouo Ngounouno, M., & Ndi, A.A. (2021). The impact of gold mining exploitation on the physicochemical quality of water: Case of Batouri (Cameroon). International Journal of Energy and Water Resources, 5, 159-173. https://doi.org/10.1007/s42108-020-00106-0
  16. Agbasi, J.C., Ayejoto, D.A., Egbueri, J.C., Khan, N., Abba, S.I., Ahmad, V., & Abuzinadah, M.F. (2024). HERisk and statistical clustering integrated for health risk modelling of PTEs in natural water resources for drinking and sanitary uses. Toxin Reviews, 43(4), 513-539. https://doi.org/10.1080/15569543.2024.2371874
  17. Aswal, R.S., Prasad, M., Patel, N.K., Srivastav, A.L., Egbueri, J.C., Anil Kumar, G., & Ramola, R.C. (2023). Occurrences, sources and health hazard estimation of potentially toxic elements in the groundwater of Garhwal Himalaya, India. Scientific Reports, 13, 13069. https://doi.org/10.1038/s41598-023-40266-7
  18. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409-1414. https://doi.org/10.1080/02329290290024925
  19. Taslima, K., Al-Emran, M., Rahman, M.S., Hasan, J., Ferdous, Z., Rohani, M.F., Shahjahan, M. (2022). Impacts of heavy metals on early development, growth and reproduction of fish – A review. Toxicology Reports, 9, 858-868. https://doi.org/10.1016/j.toxrep.2022.04.013
  20. Siddiqua, A., Hahladakis, J.N., & Al-Attiya, W.A.K.A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29, 58514-58536. https://doi.org/10.1007/s11356-022-21578-z
  21. Nersesyan, A., Mišík, M., Cherkas, A., Serhiyenko, V., Staudinger, M., Holota, S., Yatskevych, O., Melnyk, S., Holzmann, K., & Knasmüller, S. (2021). Use of micronucleus experiments for the detection of human cancer risks: a brief overview. Proceeding of the Shevchenko Scientific Society. Medical Sciences, 65(2), 50-58. https://doi.org/10.25040/ntsh2021.02.05
  22. Serhiyenko, V., Holzmann, K., Holota, S., Derkach, Z., Nersesyan, A., Melnyk, S., Chernysh, O., Yatskevych, O., Mišík, M., Bubalo, V., Strilbytska, O., Vatseba, B., Lushchak, O., Knasmüller, S., & Cherkas, A. (2022). An exploratory study of physiological and biochemical parameters to identify simple, robust and relevant biomarkers for therapeutic interventions for PTSD: Study rationale, key elements of design and a context of war in Ukraine. Proceeding of the Shevchenko Scientific Society. Medical Sciences, 69(2), 1-12. https://doi.org/10.25040/ntsh2022.02.14
  23. Mafimisebi, P. (2024). Assessment of water pollution around waste dumpsites in Bariga, Lagos, Nigeria. Asian Journal of Basic Science & Research, 6(3), 11-19.http://doi.org/10.38177/AJBSR.2024.6302
  24. Meck, M., Love, D., & Mapani, B. (2006). Zimbabwean mine dumps and their impacts on river water quality – a reconnaissance study. Physics and Chemistry of the Earth, Parts A/B/C, 31(15-16), 797-803. https://doi.org/10.1016/j.pce.2006.08.029
  25. Igboama, W.N., Hammed, O.S., Fatoba, J.O., Aroyehun, M.T., & Ehiabhili, J.C. (2022). Review article on impact of groundwater contamination due to dumpsites using geophysical and physiochemical methods. Applied Water Science, 12, 130. https://doi.org/10.1007/s13201-022-01653-z
  26. Serhiyenko, V., & Serhiyenko, O. (2021). Diabetes mellitus and arterial hypertension. International Journal of Endocrinology (Ukraine), 17(2), 175-188. https://doi.org/10.22141/2224-0721.17.2.2021.230573
  27. Serhiyenko, V.A., & Serhiyenko, A.A. (2022). Ezetimibe and diabetes mellitus: A new strategy for lowering cholesterol. Miznarodnij Endokrinologicnij Zurnal, 18(5), 302-314. https://doi.org/10.22141/2224-0721.18.5.2022.1190
  28. Minnaar, A. (2020). Water pollution and contamination from gold mines: Acid mine drainage in Gauteng Province, South Africa. Water, Governance, and Crime Issues, 193-219. https://doi.org/10.1007/978-3-030-44798-4_12
  29. Murarescu, O., Radulescu, C., Dulama, I.D., Muratoreanu, G., Pehoiu, G., Stirbescu, R.M., Bucurica, I.A., Stanescu, S.G., Ionescu, C.A., & Ba-nica, A.L. (2022). Comprehensive assessment of tailing dumps’ impact on water quality of rivers, lakes, and wells from mining areas. International Journal of Environmental Research and Public Health, 19(22), 14866. https://doi.org/10.3390/ijerph192214866
  30. Kumar, A., Das, S.K., Nainegali, L., & Reddy, K.R. (2023). Phytostabilization of coal mine over burden waste rock dump slopes: Current status, challenges, and perspectives. Bulletin of Engineering Geology and the Environment, 82, 130. https://doi.org/10.1007/s10064-023-03159-7
  31. Rahmonov, O., Czajka, A., Nádudvari, Á., Fajer, M., Spórna, T., & Szypuła, B. (2022). Soil and vegetation development on coal-waste dump in Southern Poland. International Journal of Environmental Research and Public Health, 19(15), 9167. https://doi.org/10.3390/ijerph19159167
  32. Mintaș, O.S., Simeanu, C., Berchez, O., Marele, D.C., Osiceanu, A.G., & Rusu, T. (2023). Impact of red sludge dumps, originating from industrial activity, on the soil and underground water. Water, 15(5), 898. https://doi.org/10.3390/w15050898
  33. Konanets, R., & Stepova, K. (2024). Nonlinear isotherm adsorption modelling for copper removal from wastewater by natural and modified clinoptilolite and glauconite. Chemistry and Chemical Technology, 18(1), 94-102.https://doi.org/10.23939/chcht18.01.094
  34. Stepova, K., Sysa, L., Kontsur, A., & Myakush, O. (2020). Adsorption of copper ions by microwave treated bentonite. Physics and Chemistry of Solid State, 21(3), 537-544. https://doi.org/10.15330/PCSS.21.3.537-544
  35. Sysa, L.V., Stepova, K.V., Petrova, M.A., & Kontsur, A.Z. (2019). Microwave-treated bentonite for removal of lead from wastewater. Voprosy Khimii i Khimicheskoi Tekhnologii, 5, 126-134.https://doi.org/10.32434/0321-4095-2019-126-5-126-134
  36. Shmandiy, V., Bezdeneznych, L., Kharlamova, О., Svjatenko, A., Malovanyy, M., Petrushka, K., & Polyuzhyn, I. (2017). Methods of salt content stabilization in circulating water supply systems. Chemistry & Chemical Technology, 11(2), 242-246.https://doi.org/10.23939/chcht11.02.242
  37. Malovanyy, M., Moroz, O., Popovich, V., Kopiy, M., Tymchuk, I., Sereda, A., Krusir, G., & Soloviy, Ch. (2021). The perspective of using the “open biological conveyor” method for purifying landfill filtrates. Environmental Nanotechnology, Monitoring & Management, 16, 100611.https://doi.org/10.1016/j.enmm.2021.100611
  38. Kochmar, I., Karabyn, V., Stepova, K., Stadnik, V., & Sozanskyi, M. (2024). Thermal impact on heavy metal bioavailability in burnt rocks of waste heap of Chervonohradska coal-preparation plant (Lviv Region, Ukraine). Geomatics and Environmental Engineering, 18(1), 117-133.https://doi.org/10.7494/geom.2024.18.1.117
  39. Kopylov, V., Popovych, V., Shukel, I., Fitak, M., & Koliadzhyn, I. (2023) Factors of environmental safety reduction on Styr River in the city of Lutsk (Ukraine). Ecological Engineering & Environmental Technology, 24(1), 233-246. https://doi.org/10.12912/27197050/155193
  40. Odnorih, Z., Manko, R., Malovanyy, M., & Soloviy, K. (2020). Results of surface water quality monitoring of the western bug river basin in Lviv Region. Journal of Ecological Engineering, 21(3), 18-26. https://doi.org/10.12911/22998993/118303
  41. Boholiubov, V.M., Klymenko, M.O., & Mokin, V.B. (2018). Monitorynh dovkillia, Kyiv, Ukraina: NUBiPU, 435 s.
  42. Khilchevskyi, V.K., & Zabokrytska, M.R. (2022). Features of normative assessment of water quality of water bodies for recreational purposes in Ukraine. Hydrology, Hydrochemistry and Hydroecology, 1(638), 40-53https://doi.org/10.17721/2306-5680.2022.1.4
  43. Yurasov, S.M., Safranov, T.A., & Chugai, A.V. (2012). Assessment of natural water quality. Odesa, Ukraine: Odesa State University Publishing House, 168 p.
  44. Yurasov, S.M., Kurianova, S.O., & Yurasov, M.S. (2009). Kompleksna otsinka yakosti vod za riznymy metodykamy ta shliakhy yii vdoskonalennia. Ukrainskyi Hidrometeorolohichnyi Zhurnal, 5, 42-53.
  45. Aggarwal, C.C. (2015). Data mining. Bern, Switzerland: Springer International Publishing, 746 p.https://doi.org/10.1007/978-3-319-14142-8
  46. Mehmed, K. (2020). Data mining: Concepts, models, methods, and algorithms. New York, United States: John Wiley & Sons Inc., 639 p.https://doi.org/10.1002/9781119516057
  47. Popovych, V.V., Voloshchyshyn, A.I., Tyndyk, O.S., Menshykova, O.V., Shuplat, T.I., & Bosak, P.V. (2022). Monitoring of heavy metals migration into edaphic horizons of coal mine dumps. Ecologia Balkanica, 14(2), 63-74.
  48. Popovych, V., Menshykova, O., Voloshchyshyn, A., Genyk, Y., Petlovanyi, М., & Ilkiv, B. (2023). Distribution of heavy metals in the coal mine waste dumps based on statistical analysis. Journal of Landscape Ecology, 21(2), 101-115.https://doi.org/10.56617/tl.4957
  49. Лицензия Creative Commons