Numerical simulation of carbonaceous raw material combustion in a coal seam channel
Vasyl Lozynskyi1
1Dnipro University of Technology, Dnipro, Ukraine
Min. miner. depos. 2024, 18(4):109-124
https://doi.org/10.33271/mining18.04.109
Full text (PDF)
      ABSTRACT
      Purpose. The research aims to investigate the combustion behavior of carbonaceous raw materials, specifically pulverized coal, in a cylindrical channel within a coal seam. The research focuses on understanding the temperature field dynamics, the distribution of combustion products, and the stabilization of the combustion process over time.
      Methods. The research uses advanced Computational Fluid Dynamics (CFD) modeling using non-premixed combustion and the k-epsilon turbulence model. A cylindrical channel with a length of 30 m and a diameter of 1 m is selected, reflecting optimal conditions for co-gasification based on previous studies. Heat transfer processes are incorporated by activating the energy equation, accounting for heat generation from chemical reactions and its transfer via convection, conduction, and radiation. These considerations accurately represent the thermal and flow dynamics in the confined geometry.
      Findings. The simulation indicates the temperature field stabilization, with a peak of 1540°C achieved in the combustion zone after 24 hours, gradually decreasing to approximately 520°C further downstream. Oxidation reactions are most active within the first 6 m of the channel, producing CO2 as the primary combustion product. The flow velocity analysis indicates intense turbulence near the inlet, enabling efficient mixing of fuel and oxidizer. As the process progresses, turbulence intensity decreases, maintaining a steady distribution of thermal energy and stable downstream flow behavior.
      Originality. The research has resulted in the development of a comprehensive methodology for modeling pulverized coal combustion process in geometrically constrained coal seam channels, representing the staged progression of the process (early, mid, and final stages). Patterns of temperature field stabilization and the distribution of chemical species along the channel have been identified.
      Practical implications. TThe findings provide a foundation for optimizing underground coal combustion and co-gasification processes to improve geo-reactor systems’ efficiency.
      Keywords: coal, numerical simulation, temperature field, co-gasification, underground coal gasification
      REFERENCES
- Singh, V. (2024). Energy resources. Textbook of Environment and Ecology, 185-206. https://doi.org/10.1007/978-981-99-8846-4_12
- Magdziarczyk, M., Chmiela, A., Dychkovskyi, R., & Smoliński, A. (2024). The cost reduction analysis of green hydrogen production from coal mine underground water for circular economy. Energies, 17(10), 2289. https://doi.org/10.3390/en17102289
- Bondarenko, V., Griadushchiy, Y., Dychkovskiy, R., Korz, P., & Koval, O. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 2-7. https://doi.org/10.1201/noe0415436700.ch1
- Azadi, M., Northey, S.A., Ali, S.H., & Edraki, M. (2020). Transpa-rency on greenhouse gas emissions from mining to enable climate change mitigation. Nature Geoscience, 13(2), 100-104. https://doi.org/10.1038/s41561-020-0531-3
- Petlovanyi, M., Sai, K., Malashkevych, D., Popovych, V., & Khorolskyi, A. (2023). Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, 1156(1), 012007. https://doi.org/10.1088/1755-1315/1156/1/012007
- Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2013). Mining of mineral deposits. London, United Kingdom: CRC Press, 372 p. https://doi.org/10.1201/b16354
- Petlovanyi, M., Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2021). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572-1582.
- Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental studies of the effect of design and technological solutions on the intensification of an underground coal gasification process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369
- Blinderman, M.S., & Klimenko, A.Y. (2017). Underground coal gasification and combustion. Amsterdam, the Netherland: Woodhead Publishing, Elsevier, 650 p. https://doi.org/10.1016/C2014-0-03452-1
- Li, R., Yang, Z., & Duan, Y. (2023). Energy, economic and environmental performance evaluation of co-gasification of coal and biomass negative-carbon emission system. Applied Thermal Engineering, 231, 120917. https://doi.org/10.1016/j.applthermaleng.2023.120917
- Dychkovskyi, R., Dyczko, A., & Šoštarić, S.B. (2024). Foreword: Physical and chemical geotechnologies-innovations in mining and energy. E3S Web of Conferences, 567, 00001. https://doi.org/10.1051/e3sconf/202456700001
- Mallick, D., Mahanta, P., & Moholkar, V.S. (2017). Co-gasification of coal and biomass blends: Chemistry and engineering. Fuel, 204, 106-128. https://doi.org/10.1016/j.fuel.2017.05.006
- Dychkovskyi, R., Shavarskyi, J., Cabana, E.C., & Smoliński, A. (2019). Characteristic of possible obtained products during the well underground coal gasification. Solid State Phenomena, 291, 52-62. https://doi.org/10.4028/www.scientific.net/SSP.291.52
- Kačur, J., Laciak, M., Durdán, M., & Flegner, P. (2023). Investigation of underground coal gasification in laboratory conditions: A review of recent research. Energies, 16(17), 6250. https://doi.org/10.3390/en16176250
- Lavis, S., & Mostade, M. (2023). Underground coal gasification. The Coal Handbook, 323-337. https://doi.org/10.1016/B978-0-12-824328-2.00010-8
- Bondarenko, V.I., Falshtynskiy, V.S., & Dychkovskiy, R.O. (2009). Synthetic stowing of rockmass at borehole underground coal gasification (BUCG). Deep Mining Challenges: International Mining Forum 2009, 169-177. https://doi.org/10.1201/noe0415804288.ch18
- Blinderman, M.S., & Klimenko, A.Y. (2018). Introduction to underground coal gasification and combustion. Underground Coal Gasification and Combustion, 1-8. https://doi.org/10.1016/B978-0-08-100313-8.00001-3
- Wei, J., Wang, M., Wang, F., Song, X., Yu, G., Liu, Y., Vuthaluru, H., Xu, J., Xu, Y., Zhang, H., & Zhang, S. (2021). A review on reactivity characteristics and synergy behavior of biomass and coal co-gasification. International Journal of Hydrogen Energy, 46(33), 17116-17132. https://doi.org/10.1016/j.ijhydene.2021.02.162
- Wang, M., Wan, Y., Guo, Q., Bai, Y., Yu, G., Liu, Y., Zhang, H., Zhang, S., & Wei, J. (2021). Brief review on petroleum coke and biomass/coal co-gasification: Syngas production, reactivity characteristics, and synergy behavior. Fuel, 304, 121517.https://doi.org/10.1016/j.fuel.2021.121517
- Khan, S., Elkadi, K., & Janajreh, I. (2023). Investigation of the co-gasification behavior of Kentucky coal and palm woody biomass. Procedia Computer Science, 224, 314-321. https://doi.org/10.1016/j.procs.2023.09.042
- Zhou, T., Zhang, W., Shen, Y., Luo, S., & Ren, D. (2023). Progress in the change of ash melting behavior and slagging characteristics of co-gasification of biomass and coal: A review. Journal of the Energy Institute, 101414. https://doi.org/10.1016/j.joei.2023.101414
- Lozynskyi, V. (2023). Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG). Mining of Mineral Deposits, 17(3), 67-85. https://doi.org/10.33271/mining17.03.067
- Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., & Smoliński, A. (2018). Mathematical and geomechanical model in physical and chemical processes of underground coal gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1
- Saik, P., & Berdnyk, M. (2022). Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87-94. https://doi.org/10.33271/mining16.02.087
- Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. https://doi.org/10.29227/IM-2018-02-36
- Yang, M., Mousavi, S.M., Fatehi, H., & Bai, X.S. (2023). Numerical simulation of biomass gasification in fluidized bed gasifiers. Fuel, 337, 127104. https://doi.org/10.1016/j.fuel.2022.127104
- Rehman, A.U., Unar, I.N., Abro, M., Qureshi, K., Almani, S., & Jatoi, A.S. (2023). Numerical simulations of gasification of low-grade coal and lignocellulosic biomasses in two-stage multi-opposite burner gasifier. Processes, 11(12), 3451. https://doi.org/10.3390/pr11123451
- Zhang, H., Xiao, Y., Luo, G., Fang, C., Zou, R., Zhang, Y., Li, H., & Yao, H. (2024). Numerical simulation study on chemical ignition process of underground coal gasification. Energy, 298, 131350. https://doi.org/10.1016/j.energy.2024.131350
- Tian, Z.F., Witt, P.J., Schwarz, M.P., & Yang, W. (2017). Numerical modelling of pulverised coal combustion. Handbook of Multiphase Flow Science and Technology, 1-35. https://doi.org/10.1007/978-981-4585-86-6_9-2
- Kurose, R., Watanabe, H., & Makino, H. (2009). Numerical simulations of pulverized coal combustion. KONA Powder and Particle Journal, 27(0), 144-156. https://doi.org/10.14356/kona.2009014
- Madejski, P. (2018). Coal combustion modelling in a frontal pulverized coal-fired boiler. E3S Web of Conferences, 46, 00010. https://doi.org/10.1051/e3sconf/20184600010
- Prokhorov, D.A., & Piralishvili, Sh.A. (2020). Numerical simulation of pulverized coal combustion and comparison with in-furnace measurements. Fundamental and Innovative Research for Improving Competitive Dignified Nation and Industrial Revolution 4.0, 040008. https://doi.org/10.1063/5.0000688
- Chen, G., Wang, H., Luo, K., & Fan, J. (2023). A DNS study of pulverized coal combustion in a hot turbulent environment: Effects of particle size, mass loading and preferential concentration. Combustion and Flame, 254, 112839. https://doi.org/10.1016/j.combustflame.2023.112839
- Rabaçal, M., Costa, M., Rieth, M., & Kempf, A.M. (2020). Particle history from massively parallel large eddy simulations of pulverised coal combustion in a large-scale laboratory furnace. Fuel, 271, 117587. https://doi.org/10.1016/j.fuel.2020.117587
- Saha, M., Chinnici, A., Dally, B.B., & Medwell, P.R. (2015). Numerical study of pulverized coal mild combustion in a self-recuperative furnace. Energy & Fuels, 29(11), 7650-7669. https://doi.org/10.1021/acs.energyfuels.5b01644
- Mikulčić, H., von Berg, E., Vujanović, M., & Duić, N. (2014). Numerical study of co-firing pulverized coal and biomass inside a cement calciner. Waste Management & Research: The Journal for a Sustainable Circular Economy, 32(7), 661-669. https://doi.org/10.1177/0734242x14538309
- Amritkar, A.R., Tafti, D., & Deb, S. (2012). Particle scale heat transfer analysis in rotary kiln. Heat Transfer Summer Conference, 9530962. https://doi.org/10.1115/ht2012-58137
- Liang, Z., Peng, X., Huang, Z., Chen, J., Li, J., Yi, L., & Huang, B. (2023). Non-isothermal reduction kinetics of low-grade iron ore-coal mini-pellet in a low-temperature rotary kiln process. Materials Today Communications, 35, 105607. https://doi.org/10.1016/j.mtcomm.2023.105607
- Chang, J., Ma, X., & Li, X. (2023). CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler. Particuology, 81, 174-188. https://doi.org/10.1016/j.partic.2022.12.019
- Sutardi, T., Wang, L., Paul, M.C., & Karimi, N. (2018). Numerical simulation approaches for modelling a single coal particle combustion and gasification. Engineering Letters, 26(2), 257-266.
- Arasappan, Y. (2022). Mathematical simulation of pulverized coal combustion. Acta Mechanica Slovaca, 26(3), 64-69. https://doi.org/10.21496/ams.2023.008
- Sakolaree, P., Rattanaphaibun, K., Sukhanonsawas, W., & Sukjai, Y. (2022). Numerical simulation and experimental validation of pulverized coal combustion by using CFD. II International Scientific Forum on Computer and Energy Sciences (WFCES-II 2021), 2656, 070009. https://doi.org/10.1063/5.0099579
- Nicolai, H., Li, T., Geschwindner, C., di Mare, F., Hasse, C., Böhm, B., & Janicka, J. (2021). Numerical investigation of pulverized coal particle group combustion using tabulated chemistry. Proceedings of the Combustion Institute, 38(3), 4033-4041. https://doi.org/10.1016/j.proci.2020.06.081
- Nematollahi, M., Sadeghi, S., Rasam, H., & Bidabadi, M. (2020). Analytical modelling of counter-flow non-premixed combustion of coal particles under non-adiabatic conditions taking into account trajectory of particles. Energy, 192, 116650. https://doi.org/10.1016/j.energy.2019.116650
- Ma, P., Nicolai, H., Huang, Q., Debiagi, P., Berkel, L.L., Stagni, A., Yang, Y., & Li, S. (2024). Numerical investigation on pyrolysis and ignition of ammonia/coal blends during co-firing. Combustion and Flame, 261, 113268. https://doi.org/10.1016/j.combustflame.2023.113268
- Zhang, Z., Chang, K., Si, M., Luo, Z., & Cheng, Q. (2024). Study on radiation characteristics of coal fired boiler changing with burnout rate. Fuel, 362, 130883. https://doi.org/10.1016/j.fuel.2024.130883
- Ghose, P., Sahoo, T.K., & Sahu, A.K. (2022). Pulverized coal combustion computational modeling approach: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 237(4), 797-818. https://doi.org/10.1177/09576509221132939
- Cai, R., Luo, K., Watanabe, H., Kurose, R., & Fan, J. (2020). Recent advances in high-fidelity simulations of pulverized coal combustion. Advanced Powder Technology, 31(7), 3062-3079. https://doi.org/10.1016/j.apt.2020.05.001
- Miura, T. (2023). Simulation of pulverized coal combustion. Proceeding of Energy and the Environment, 1998, 33-38. https://doi.org/10.1615/1-56700-127-0.50
- Chen, G., Wang, H., Luo, K., & Fan, J. (2023). A DNS study of pulverized coal combustion in a hot turbulent environment: Effects of particle size, mass loading and preferential concentration. Combustion and Flame, 254, 112839. https://doi.org/10.1016/j.combustflame.2023.112839
- Zhang, P., Zhang, H., & Zhang, Y.F. (2024). Kinetic studies of ignition of coal char particle suspension in hot air. Fuel, 357, 129977. https://doi.org/10.1016/j.fuel.2023.129977
- Luu, T.D., Shamooni, A., Kronenburg, A., Braig, D., Mich, J., Nguyen, B.D., Scholtissek, A., Hasse, C., Thäter, G., Carbone, M., Frohnapfel, B., & Stein, O.T. (2024). Carrier-phase DNS of ignition and combustion of iron particles in a turbulent mixing layer. Flow, Turbulence and Combustion, 112(4), 1083-1103. https://doi.org/10.1007/s10494-023-00526-y
- Barraza, C.L., Bula, A.J., & Palencia, A. (2012). Modeling and numerical solution of coal and natural gas co-combustion in a rotary kiln. Combustion Science and Technology, 184(1), 26-43. https://doi.org/10.1080/00102202.2011.615769
- Macphee, J. E., Sellier, M., Jermy, M., & Tadulan, E. (2009). CFD modeling of pulverized coal combustion in a rotary lime kiln. Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 9(11), 1-6.
- Sahin, M., Ilbas, M., & Arslan, B. (2024). Entrainment effects on combustion and emission characteristics of turbulent non‐premixed ammonia/air and methane/air swirl flames through a developed perforated burner. The Canadian Journal of Chemical Engineering, 102(3), 1066-1077. https://doi.org/10.1002/cjce.25100
- Meller, D., Engelmann, L., Stein, O.T., & Kempf, A.M. (2023). Exhaust Gas Recirculation (EGR) analysis of a swirl-stabilized pulverized coal flame with focus on NOx release using FPV-LES. Fuel, 343, 127939. https://doi.org/10.1016/j.fuel.2023.127939
- Zhang, H., Lin, H., Zhou, X., Wang, X., Zheng, H., Liu, Y., & Tan, H. (2024). CFD modeling and industry application of a self-preheating pulverized coal burner of high coal concentration and enhanced combustion stability under ultra-low load. Applied Thermal Engineering, 253, 123831. https://doi.org/10.1016/j.applthermaleng.2024.123831