Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research into mass stress and failure zone parameters during blasting of fractured high benches using blasthole charges

Yerdulla Serdaliyev1, Yerkin Iskakov1

1Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2024, 18(4):98-108


https://doi.org/10.33271/mining18.04.098

Full text (PDF)


      ABSTRACT

      Purpose.The paper focuses on the study of the stress distribution patterns in fractured rock masses during rock breaking on high benches using blasthole explosive charges. The research aims to optimize the parameters of drilling-blasting operations through detailed analysis of stress distribution and formation of failure zones on high benches. This will significantly improve the handling equipment operating efficiency, as well as develop economically feasible blasting patterns tailored to quarry geometry.

      Methods. The research is based on theoretical modeling of stress propagation caused by detonating the blasthole explosive charges in fractured rock masses. The stress distribution around the charge is calculated using equations derived from elastic deformation and surface wave theory, taking into account the particular characteristics of fractured high benches. The model includes stress propagation, wave transformation, and rock fracture behavior to identify rock crushing zones.

      Findings. The results have revealed that the main factor of rock failure is tensile stress waves resulting from the reflection of compression waves. The degree of rock crushing and the volume of failure zones depend on the length and diameter of the blasthole explosive charge, the properties of the explosive agent, as well as the network of pre-existing fractures.

      Originality. A new approach to studying the stress distribution in fractured rock masses during blasting operations is presented. This paper takes into account the influence of existing fractures and the interaction of stress waves with natural disturbances in the rock, thus allowing more accurate prediction of rock crushing. For the mining conditions of the Pustynnoye Deposit, the ratios between the radii of failure zones and the value of breaking stresses have been found, and a function for determining the failure radius has been proposed.

      Practical implications. The results of this research can be used to optimize the parameters of blasting operations in quarries with fractured high benches. By determining the optimal sizes and placement of charges, it is possible to achieve more efficient rock crushing, reduce equipment wear and improve overall production efficiency.

      Keywords: blasting operations, mining, quarry, high benches, crushing, rock mass, blast energy, failure zones


      REFERENCES

  1. Issatayeva, F.M., Aubakirova, G.M., Maussymbayeva, A.D., Togaibayeva, L.I., Biryukov, V.V., & Vechkinzova, E. (2023). Fuel and energy complex of Kazakhstan: Geological and economic assessment of enterprises in the context of digital transformation. Energies, 16(16), 6002. https://doi.org/10.3390/en16166002
  2. Atakhanova, Z., & Azhibay, S. (2023). Assessing economic sustainability of mining in Kazakhstan. Mineral Economics, 36(4), 719-731. https://doi.org/10.1007/s13563-023-00387-x
  3. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, 1, 41-45.https://doi.org/10.17580/em.2022.01.08
  4. Kunarbekova, M., Yeszhan, Y., Zharylkan, S., Alipuly, M., Zhantikeyev, U., Beisebayeva, A., Kudaibergenov, K., Rysbekovm K., Toktarbay, Z., & Azat, S. (2024). The State of the art of the mining and metallurgical industry in Kazakhstan and future perspectives: A systematic review. ES Materials & Manufacturing, 25, 1219. https://doi.org/10.30919/esmm1219
  5. Shaldarbekov, K.B., Mukhanova, G.S., Dossova, S.N., Mussaeva, G.K., Nurmukhambetova, Z.S., & Shaldarbekova, K.B. (2018). Problems of regional industrial projects realization. Journal of Advanced Research in Law and Economics, 9(6(36)), 2119-2128. https://doi.org/10.14505/jarle.v9.6(36).27
  6. Official website of the Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. (2024). Retrieved from: https://stat.gov.kz/
  7. Aramendia, E., Brockway, P.E., Taylor, P.G., & Norman, J. (2023). Global energy consumption of the mineral mining industry: Exploring the historical perspective and future pathways to 2060. Global Environmental Change, 83, 102745. https://doi.org/10.1016/j.gloenvcha.2023.102745
  8. Serdaliyev, Y., Iskakov, Y., Bakhramov, B., & Amanzholov, D. (2022). Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values. Mining of Mineral Deposits, 16(4), 56-64. https://doi.org/10.33271/mining16.04.056
  9. Mambetaliyeva, A.R., Mamyrbayeva, K.K., Turysbekov, D.K., Dauletbakov, T.S., & Barmenshinova, M.B. (2022). Investigation of the process of sulfiding of gold-arsenic containing ores and concentrates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 51-56. https://doi.org/10.33271/nvngu/2022-3/051
  10. Skidin, I.E., Vodennikova, O.S., Saithareiev, L.N., Baboshko, D.Y., & Barmenshinova, M.B. (2023). Technology of forming a wear-resistant thermite alloy layer based on the Fe-Cr-C system by self-propagating high-temperature synthesis. IOP Conference Series: Earth and Environmental Science, 1254(1), 012008. https://doi.org/10.1088/1755-1315/1254/1/012008
  11. Serdaliyev, Y.T., & Amanzholov, D.B. (2012). Issledovanie i sovershenstvovanie parametrov burovzryvnykh rabot na rudnikakh Kazakhstana. Gornoe Delo i Metallurgiya v Kazakhstane. Sostoyanie i Perspektivy, 40-41.
  12. Serdaliev, E.T., Iskakov, E.E., & Asan, S.Yu. (2018). Obosnovanie ratsionalnykh parametrov skvazhinnoy otboyki rudy pri vyemke zalezhey s podetazhnymi shtrekami rudnika “Akzhal”. Gornyi Zhurnal Kazakhstana, 1, 31-35.
  13. Rakishev, B.R., & Rakisheva, Z.B. (2011). Basic characteristics of the stages of rock massif destruction by explosive crushing. Proceedings of the 7th International Conference on Physical Problems of Rock Destruction, 65-69.
  14. Tambiev, P.G. (2017). Razvitie vzryvnogo dela v Respublike Kazakhstan. Almaty, Kazakhstan: Art Do, 424 s.
  15. Portnov, V.S., Yurov, V.M., & Mausymbaeva, A.D. (2018). Influence of surface properties of minerals on rebellious ore disintegration. Journal of Mining Science, 54, 681-689.
  16. Bitimbaev, M.Zh., Shaposhnik, Yu.N., & Krupnik, L.A. (2012). Vzryvnoe delo. Almaty, Kazakhstan: Print-S, 822 s.
  17. Tambiev, P.G. (2015). Izgotovlenie vzryvchatykh veshchestv iz nevzryvchatykh komponentov i kompleksnaya mekhanizatsiya vzryvnykh rabot. Almaty, Kazakhstan: KITs TOO, 378 s.
  18. Belyakov, Y.I., & Sychev, V.S. (1985). Continuous methods of working high blasted benches. Soviet Mining, 1(6), 648-652. https://doi.org/10.1007/BF02501841
  19. Soltanalinejad, S., & Moomivand, H. (2024). Development a novel empirical approach to control overbreak, surface quality and slope angle of benches following blasting. Canadian Geotechnical Journal, e-First. https://doi.org/10.1139/cgj-2023-0599
  20. Tao, M., Xu, Y., Zhao, R., Liu, Y., & Wu, C. (2024). Energy control and block performance optimization of bench blasting. International Journal of Rock Mechanics and Mining Sciences, 180, 105830. https://doi.org/10.1016/j.ijrmms.2024.105830
  21. Fattahi, H., Ghaedi, H., & Armaghani, D. J. (2024). Enhancing blasting efficiency: A smart predictive model for cost optimization and risk reduction. Resources Policy, 97, 105261. https://doi.org/10.1016/j.resourpol.2024.105261
  22. Wang, Z. L., & Konietzky, H. (2009). Modelling of blast-induced fractures in jointed rock masses. Engineering Fracture Mechanics, 76(12), 1945-1955. https://doi.org/10.1016/j.engfracmech.2009.05.004
  23. Ding, C., Yang, R., & Yang, L. (2021). Experimental results of blast-induced cracking fractal characteristics and propagation behavior in deep rock mass. International Journal of Rock Mechanics and Mining Sciences, 142, 104772. https://doi.org/10.1016/j.ijrmms.2021.104772
  24. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposit, 231-235. https://doi.org/10.1201/b16354-43
  25. Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655-667. https://doi.org/10.46544/ams.v28i3.10
  26. Marchenko, L. N. (1982). Raising the efficiency of a blast in rock crushing. Soviet Mining Science, 18(5), 395-399. https://doi.org/10.1007/BF02528444
  27. Maksimov, P.N. (2023). Otsenka skhodstva mineralogo-geohimicheskikh osobennostey zheleznyakov Turgayskogo progiba (Severnyiy Kazakhstan). Problemy Geologii i Osvoeniya Nedr, 1, 92-94.
  28. Maksimov, P.N. (2023). Potentsialnye istochniki rudnogo veschestva verkhnemelovykh zheleznyakov Turgayskogo progiba (Severnyy Kazakhstan). Problemy Geologii i Osvoeniya Nedr, 1, 94-95.
  29. Kurchavov, A.M., Grankin, M.S., Mal’chenko, E.G., Khamzin, B.S., & Zhukovskii, V.I. (2002). Metallogenic zonality of the Devonian volcanoplutonic belt in Central Kazakhstan. Geology of Ore Deposits, 44(1), 18-25.
  30. Vardanyan, V.P., & Hovhannisyan, A.H. (2017). Geophysical research results of buried relief and distribution groundwater runoff of the Aragats massif. Annals of Agrarian Science, 15(1), 109-112. https://doi.org/10.1016/j.aasci.2017.02.013
  31. Kaplin, V., & Shakula, G. (2021). New species of bristletails of the family Machilidae (Archaeognatha) from Kazakhstan. Acta Entomologica Musei Nationalis Pragae, 61(2), 435-445. https://doi.org/10.37520/aemnp.2021.024
  32. Maruyama, S., & Parkinson, C.D. (2000). Overview of the geology, petrology and tectonic framework of the high‐pressure – ultrahigh‐pressure metamorphic belt of the Kokchetav Massif, Kazakhstan. Island Arc, 9(3), 439-455. https://doi.org/10.1046/j.1440-1738.2000.00288.x
  33. Begalinov, A., Khomiakov, V., Serdaliyev, Y., Iskakov, Y., & Zhanbolatov, A. (2020). Formulation of methods reducing landslide phenomena and the collapse of career slopes during open-pit mining. E3S Web of Conferences, 168, 00006. https://doi.org/10.1051/e3sconf/202016800006
  34. Ivadilinova, D.T., Issabek, T.K., Takhanov, D.K., & Yeskenova, G.B. (2023). Predicting underground mining impact on the earth’s surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 32-37. https://doi.org/10.33271/nvngu/2023-1/032
  35. Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determining the performance of explosives for blasting management. Rudarsko Geolosko Naftni Zbornik, 38(3), 19-28. https://doi.org/10.17794/rgn.2023.3.2
  36. Begalinov, A.B., Serdaliev, E.T., Iskakov, E.E., & Amanzholov, D.B. (2013). Shock blasting of ore stockpiles by low-density explosive charges. Journal of Mining Science, 49(6), 926-931. https://doi.org/10.1134/s1062739149060129
  37. Rossmanith, H.P., Daehnke, A., Nasmillner, R.E.K., Kouzniak, N., Ohtsu, M., & Uenishi, K. (1997). Fracture mechanics applications to drilling and blasting. Fatigue & Fracture of Engineering Materials & Structures, 20(11), 1617-1636. https://doi.org/10.1111/j.1460-2695.1997.tb01515.x
  38. Zuo, J., Yang, R., Gong, M., Ma, X., & Wang, Y. (2022). Fracture characteristics of iron ore under uncoupled blast loading. International Journal of Mining Science and Technology, 32(4), 657-667. https://doi.org/10.1016/j.ijmst.2022.03.008
  39. Liu, D., Wei, D., Chen, M., Zhang, H., & Lu, W. (2024). Prediction of the median fragmentation of bench blasting in layered rock mass based on discrete fracture network. Rock Mechanics and Rock Engineering, 57(3), 1653-1668. https://doi.org/10.1007/s00603-023-03642-3
  40. Yin, Y., Wang, J., Zou, B., Zhang, J., Su, Y., & Sun, Q. (2023). Evaluation of controlled blasting quality for rock-mass tunneling based on multiple indices. Journal of Construction Engineering and Management, 149(1), 04022155. https://doi.org/10.1061/JCEMD4.COENG-1202
  41. Himanshu, V.K., Bhagat, N.K., Vishwakarma, A.K., & Mishra, A.K. (2024). Principles and practices of rock blasting. Boca Raton, United States: CRC Press, 262 p. https://doi.org/10.1201/9781003461616
  42. Serdaliyev, Y., & Iskakov, Y. (2022). Research into electro-hydraulic blasting impact on ore masses to intensify the heap leaching process. Mining of Mineral Deposits, 16(1), 52-57. https://doi.org/10.33271/mining16.01.052
  43. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 37-41.https://doi.org/10.29202/nvngu/2019-1/20
  44. Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, 280, 08001. https://doi.org/10.1051/e3sconf/202128008001
  45. Begalinov, A., Serdaliyev, Y., Abshayakov, E., Bakhramov, B., & Baigenzhenov, O. (2015). Extraction technology of fine vein gold ores. Metallurgical & Mining Industry, 7(4), 312-320.
  46. Umirova, G., Zakariya, M., & Abdullina, A. (2024). Review of the current state of knowledge in forecasting and searching for gold deposits in the North-Western Balkhash region. Complex Use of Mineral Resources, 332(1), 62-69. https://doi.org/10.31643/2025/6445.05
  47. Baibatsha, A.B., Bekbotayev, A.T., & Bekbotayeva, A.A. (2013). Ore-bearing strata lithology of the Zhezkazgan copper sandstones deposit. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 1, 135-140. https://doi.org/10.5593/SGEM2013/BA1.V1/S01.019
  48. Seitmuratova, E., Arshamov, Y., Bekbotayeva, A., Baratov, R., & Dautbekov, D. (2016). Priority metallogenic aspects of late paleozioc volcanic-plutonic belts of Zhongar-Balkhash fold system. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 1, 511-518.https://doi.org/10.5593/sgem2016/b11/s01.064
  49. Rakishev, B.R. (1998). Energoemkost mekhanicheskogo razrusheniya gornykh porod. Almaty, Kazakhstan: Baspager, 210 s.
  50. Rakishev, B.R. (2016). Avtomatizirovannoe proektirovanie i proizvodstvo massovykh vzryvov na karerakh. Almaty, Kazakhstan: Gylym, 340 s.
  51. Saharan, M.R., & Mitri, H.S. (2008). Numerical procedure for dynamic simulation of discrete fractures due to blasting. Rock Mechanics and Rock Engineering, 41(5), 641-670. https://doi.org/10.1007/s00603-007-0136-9
  52. Лицензия Creative Commons