Characterization and ceramic properties evaluation of Lombok clay
I Putu Angga Kristyawan1, Anak Agung Rai Indra Wardana1, I Gusti Agung Suradharmika1, Arifin Siagian1, Made Asri Puspadewi1, Ni Putu Muliawati1, Komang Nelly Sundari1, Totok Nugroho1
1Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
Min. miner. depos. 2024, 18(3):18-24
https://doi.org/10.33271/mining18.03.018
Full text (PDF)
      ABSTRACT
      Purpose. This research aims to assess the characteristics of ceramics made from Lombok clay to optimize the quality of ceramic products in the Lombok region and surrounding areas.
      Methods. Methods used to characterize Lombok clay include measuring its chemical composition, loss on ignition, plasticity level and conducting mineral analysis. Additionally, the influence of sintering temperature on clay properties and shrinkage is studied.
      Findings. The main mineral component of Lombok clay is kaolin, which has a high level of plasticity and a water absorption rate of 7 ± 0.6%. The ceramic body produced from this clay is classified as semi-porcelain, making it suitable for medium-sized tableware manufactured using the rotating technique.
      Originality. This research highlights the effect of sintering temperature on the mineral transformation of Lombok clay and provides valuable information on its optimal applications. It fills a gap in the literature by providing comprehensive data on clay properties and optimal processing conditions that have previously been underexplored.
      Practical implications. Lombok clay is used predominantly by small-scale ceramic craftsmen in Lombok and Bali due to its relatively low market price. With the findings of this study, these craftsmen can enhance the quality of their products to semi-porcelain standards by adjusting the sintering temperature.
      Keywords: Lombok clay, ceramic characterization, semi-porcelain, sintering temperature, ceramic properties
      REFERENCES
- Marques, R., Jorge, A., Franco, D., Dias, M.I., & Prudêncio, M.I. (2010). Clay resources in the Nelas region (Beira Alta), Portugal. A contribution to the characterization of potential raw materials for prehistoric ceramic production. Clay Minerals, 45(3), 353-370. https://doi.org/10.1180/claymin.2010.045.3.353
- González, A.S., Valera, T.S., & Toffoli, S.M. (2014). Design of a ceramic slip for electrical porcelain insulators, using clay dispersed in a ball mill. Materials Science Forum, 805, 475-479. https://doi.org/10.4028/www.scientific.net/MSF.805.475
- Boussak, H., Chemani, H., & Serier, A. (2015). Characterization of porcelain tableware formulation containing bentonite clay. International Journal of Physical Sciences, 10(1), 38-45. https://doi.org/10.5897/ijps2014.4218
- Mikhalev, V.V., & Vlasov, A.S. (2007). Properties of clays for manufacturing sanitary ware. Glass and Ceramics, 64, 78-81. https://doi.org/10.1007/s10717-007-0019-2
- Sawadogo, M., Seynou, M., Zerbo, L., Sorgho, B., Laure Lecomte-Nana, G., Blanchart, P., & Ouédraogo, R. (2020). Formulation of clay refractory bricks: influence of the nature of chamotte and the alumina content in the clay. Advances in Materials, 9(4), 59-67. https://doi.org/10.11648/j.am.20200904.11
- Subedi, M.M. (2013). Ceramics and its importance. Himalayan Physics, 4(4), 80-82. https://doi.org/10.3126/hj.v4i0.9433
- Fang, M., & Chen, H. (2020). Advantages and disadvantages of ceramic materials in environmental art. IOP Conference Series: Materials Science and Engineering, 782(2), 022030. https://doi.org/10.1088/1757-899X/782/2/022030
- United States Geological Survey. (2020). Mineral commodity summaries 2020: Clays. Available at: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-clays.pdf
- Akanda, M.M., Mallik, A., Bin Karim, A., & Mintu Ali, M. (2019). Locally available clays of bangladesh as a replacement of imported clays for ceramic industries. Advanced Materials Letters, 10(11), 839-843. https://doi.org/10.5185/amlett.2019.0022
- BPS-Statistics Indonesia (n.d.). Volume of mining production of mineral commodities (m3) 2019-2021 (in Bahasa). Retrieved from: https://www.bps.go.id/id/query-builder
- Dondi, M., & Gian Paolo, B. (2021). Basic guidelines for prospecting and technological assessment of clays for the ceramic industry, Part 1. InterCeram: International Ceramic Review, 70(4), 36-46. https://doi.org/10.1007/s42411-021-0472-x
- Dondi, M., & Gian Paolo, B. (2022). Basic Guidelines for Prospecting and Technological Assessment of Clays for the Ceramic Industry, Part 2. InterCeram: International Ceramic Review, 71(1), 28-37. https://doi.org/10.1007/s42411-022-0484-1
- Akanwa, A.O., & Joe-Ikechebelu, N.N. (2022). Sustainable natural resources exploitation: Clay/sand mining on diminishing greener security and increased climate risks in Nigeria. Natural Resources Conservation and Advances for Sustainability, 545-562. https://doi.org/10.1016/B978-0-12-822976-7.00018-1
- Ramadhan, N.F., Gunawan, T., & Adji, T.N. (2020). Environmental damage assessment due to traditional mining on local scale in the Wungkal Hills, Yogyakarta-Indonesia. Journal of Degraded and Mining Lands Management, 7(2), 1995-2000. https://doi.org/10.15243/jdmlm.2020.072.1995
- Arunashantha, S., & Bandara, S.M.R.S. (2020). The environmental impact of the clay industry in Sri Lanka: With special reference to Dankotuwa Divisional Secretariat Division (DSD). International Journal of Scientific and Research Publications, 10(7), 92-96. https://doi.org/10.29322/ijsrp.10.07.2020.p10311
- Furszyfer Del Rio, D.D., Sovacool, B.K., Foley, A.M., Griffiths, S., Bazilian, M., Kim, J., & Rooney, D. (2022). Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renewable and Sustainable Energy Reviews, 157, 112081. https://doi.org/10.1016/j.rser.2022.112081
- Zawrah, M.F., Taha, M.A., & Youness, R.A. (2024). Advanced ceramics: Stages of development. Advanced Ceramics. Advances in Material Research and Technology, 1-46. https://doi.org/10.1007/978-3-031-43918-6_1
- Milošević, M., Logar, M., Kaluderović, L., & Jelić, I. (2017). Cha-racterization of clays from Slatina (Ub, Serbia) for potential uses in the ceramic industry. Energy Procedia, 125, 650-655. https://doi.org/10.1016/j.egypro.2017.08.270
- Manjate, V.A., Issufo, Z., & Magenge, A.L. (2020). Evaluation of clay soils from Manjacazi district (Mozambique) as potential raw material for the ceramic industry. Heliyon, 6(10), e05189. https://doi.org/10.1016/j.heliyon.2020.e05189
- Pardo, F., Jordan, M.M., & Montero, M.A. (2018). Ceramic behaviour of clays in Central Chile. Applied Clay Science, 157, 158-164. https://doi.org/10.1016/j.clay.2018.02.044
- Ben Salah, I., Sdiri, A., Ben M’barek Jemai, M., & Boughdiri, M. (2018). Potential use of the lower cretaceous clay (Kef area, Northwestern Tunisia) as raw material to supply ceramic industry. Applied Clay Science, 161, 151-162. https://doi.org/10.1016/j.clay.2018.04.015
- Subari, Wenas, R.I.F., & Suripto, S. (2008). Industrial minerals in West Kalimantan and their utilization for ceramic products. Indonesian Mining Journal, 11(3), 27-37. https://doi.org/10.30556/imj.Vol11.No3.2008.583
- Winarno, T. (2016). Comparison of the characteristics of Kasongan and Godean clays as raw materials for the Kasongan pottery industry (in Bahasa). Teknik, 37(1), 41-46. https://doi.org/10.14710/teknik.v37i1.10087
- Bambali, I.J., & Rumbino, Y. (2021). Characteristics of clay and beach sand as raw materials for Gerabah in Ampera village, Kecamatan Alor Baratlaut Alor district, Nusa Tenggara Timur (in Bahasa). Journal Teknologi, 15(1), 34-42.
- Nugroho, T., Prajoko, B., Suryawan, I.G., & Sukadana, W. (2023). Analysis of clay mineral transformation in Plambik village, Central Lombok using x-ray diffraction and scanning electron microscope methods. Journal of Physics and Its Applications, 6(1), 7-10. https://doi.org/10.14710/jpa.v6i1.19011
- Sundari, K.N., Subari, & Erlangga, B.D. (2022). Characterization of Buleleng clay and improvement of its ceramic properties. Mining of Mineral Deposits, 16(4), 29-33. https://doi.org/10.33271/mining16.04.029
- Badan Pusat Statistik. (2015). Number of mineral resources by kind of mineral 2014. Retrieved from: https://lombokbaratkab.bps.go.id
- Akbar, T., & Hendratno. (2022). Characteristics of Parit Malintang clay as a local wealth for raw material for ceramic crafts (in Bahasa). Journal of Craft, 2(1), 24-30. https://doi.org/10.26887/relief.v2i1.2591
- Putri, S.E., & Pratiwi, D.E. (2017). Analysis of mineral in South Sulawesi natural clay as basic material of ceramic synthesis (in Bahasa). Journal Chemical, 18(1), 35-38. https://doi.org/10.35580/chemica.v18i1.4668
- Gol, F., Saritas, Z.G., Cıbuk, S., Ture, C., Kacar, E., Yilmaz, A., Arslan, M., & Sen, F. (2022). Coloring effect of iron oxide content on ceramic glazes and their comparison with the similar waste containing materials. Ceramics International, 48(2), 2241-2249. https://doi.org/10.1016/J.CERAMINT.2021.10.001
- Hou, C., Jin, X., Zhao, L., Li, P., & Fan, X. (2022). Analysis of tensile strength and fracture toughness of ZrB2-SiC ceramic from three-point bending samples with edge cracks. Ceramics International, 48(20), 30078-30085. https://doi.org/10.1016/j.ceramint.2022.06.278
- Wang, W., Chen, J., Sun, X., Sun, G., Liang, Y., & Bi, J. (2022). Influence of additives on microstructure and mechanical properties of alumina ceramics. Materials, 15(8), 1-11. https://doi.org/10.3390/ma15082956
- Casasola, R., Rincón, J.M., & Romero, M. (2012). Glass-ceramic glazes for ceramic tiles: A review. Journal of Materials Science, 47(2), 553-582. https://doi.org/10.1007/s10853-011-5981-y
- Subari. (2014). The use feldspathic sandstone and claystone for ornamental ceramics. Journal Teknologi Mineral Dan Batubara, 10(3), 155-164. https://doi.org/10.30556/jtmb.Vol10.No3.2014.731
- Balde, M.Y., Njiomou Djangang, C., Bah, A., Blanchart, P., & Njopwouo, D. (2021). Effect of physicochemical characteristics on the use of clays from Kindia (Guinea) in ceramic compositions. International Journal of Applied Ceramic Technology, 18(3), 1033-1042. https://doi.org/10.1111/ijac.13669
- Delle Piane, C., Wilson, C. J. L., & Burlini, L. (2009). Dilatant plasticity in high-strain experiments on calcite-muscovite aggregates. Journal of Structural Geology, 31(10), 1084-1099. https://doi.org/10.1016/j.jsg.2009.03.005
- Buyondo, K.A., Kasedde, H., & Kirabira, J.B. (2022). A comprehensive review on kaolin as pigment for paint and coating: Recent trends of chemical-based paints, their environmental impacts and regulation. Case Studies in Chemical and Environmental Engineering, 6, 100244. https://doi.org/10.1016/j.cscee.2022.100244
- Kirstein, K., Reichmann, K., Preis, W., & Mitsche, S. (2011). Effect of commercial anatase-TiO2 raw materials on the electrical characteristics of ceramics with positive temperature coefficient of resistivity. Journal of the European Ceramic Society, 31(13), 2339-2349. https://doi.org/10.1016/j.jeurceramsoc.2011.05.028
- Aksel, C. (2003). The effect of mullite on the mechanical properties and thermal shock behaviour of alumina-mullite refractory materials. Ceramics International, 29(2), 183-188. https://doi.org/10.1016/S0272-8842(02)00103-7
- Zawrah, M.F., & Hamzawy, E.M.A. (2002). Effect of cristobalite formation on sinter ability, microstructure and properties of glass/ceramic composites. Ceramics International, 28(2), 123-130. https://doi.org/10.1016/S0272-8842(01)00067-0
- Lahoti, M., Wong, K.K., Yang, E.-H., & Tan, K.H. (2018). Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceramics International, 44(5), 5726-5734. https://doi.org/10.1016/j.ceramint.2017.12.226
- Schneider, H., Schreuer, J., & Hildmann, B. (2008). Structure and properties of mullite – A review. Journal of the European Ceramic Society, 28(2), 329-344. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
- Casagrande, A. (1948). Classification and identification of soils. Transactions of the American Society of Civil Engineers, 113(1). https://doi.org/10.1061/TACEAT.0006109
- Andrade, F.A., Al-Qureshi, H.A., & Hotza, D. (2011). Measuring the plasticity of clays: A review. Applied Clay Science, 51(1), 1-7. https://doi.org/10.1016/j.clay.2010.10.028
- Barnes, G.E. (2018). Workability of clay mixtures. Applied Clay Science, 153, 107-112. https://doi.org/10.1016/j.clay.2017.12.006
- Nandi, V. de S., Zaccaron, A., Raupp-Pereira, F., Arcaro, S., Bernardin, A.M., & Montedo, O.R.K. (2023). Plastic behaviour of clay materials for the manufacture of fast-drying red ceramics. Clay Minerals, 58(1), 26-37. https://doi.org/DOI:10.1180/clm.2023.9
- Badan Standardizes Nasional. (2008). SNI 7275:2008: Glazed ceramics – Tableware – Eating and drinking utensils. Indonesian National Standardization Agency.
- Toplicic-Curcic, G., Momcilovic-Petronijevic, A., & Curcic, A. (2018). Architecture and ceramic materials, development through time: Ceramic tiles and ceramic roof tiles. Facta Universitatis – Series: Architecture and Civil Engineering, 16(2), 315-327. https://doi.org/10.2298/fuace200521011t
- Alvira, R.C. (2022). Digital marketing application to increase sales turnover of naruna handmade ceramic products. Inaque: Journal of Industrial and Quality Engineering, 10(1), 37-55. https://doi.org/10.34010/iqe.v10i1.6323
- Ngun, B.K., Mohamad, H., Katsumata, K., Okada, K., & Ahmad, Z.A. (2014). Using design of mixture experiments to optimize triaxial ceramic tile compositions incorporating Cambodian clays. Applied Clay Science, 87, 97-107. https://doi.org/https://doi.org/10.1016/j.clay.2013.11.037
- Li, H., Liu, Y., Liu, Y., Zeng, Q., & Liang, J. (2021). Silica strengthened alumina ceramic cores prepared by 3D printing. Journal of the European Ceramic Society, 41(4), 2938-2947. https://doi.org/10.1016/j.jeurceramsoc.2020.11.050
- Toludare, T.S., Owoeye, S.S., Kenneth-Emehige, A., & Isinkaye, O.E. (2019). Microstructure evolution and physico-mechanical properties of bone China porcelain compositions using two selected kaolinite clays from Nigeria. Scientific African, 3, e00066. https://doi.org/10.1016/j.sciaf.2019.e00066
- Reinosa, J.J., Rubio-Marcos, F., Solera, E., Bengochea, M.A., & Fernández, J.F. (2010). Sintering behaviour of nanostructured glass-ceramic glazes. Ceramics International, 36(6), 1845-1850. https://doi.org/10.1016/j.ceramint.2010.03.029
- Zhang, Y., Tan, Y., Sun, R., & Zhang, W. (2023). Preparation of ceramic membranes and their application in wastewater and water treatment. Water, 15(19), 3344. https://doi.org/10.3390/w15193344
- Charmeau, J.-Y., Chailly, M., Gilbert, V., & Béreaux, Y. (2008). Influence of mold surface coatings in injection molding. Application to the ejection stage. International Journal of Material Forming, 1(1), 699-702. https://doi.org/10.1007/s12289-008-0311-x
- Enneti, R.K., Lusin, A., Kumar, S., German, R.M., & Atre, S.V. (2013). Effects of lubricant on green strength, compressibility and ejection of parts in die compaction process. Powder Technology, 233, 22-29. https://doi.org/10.1016/j.powtec.2012.08.033
- Oummadi, S., Nait-Ali, B., Alzina, A., Paya, M.-C., Gaillard, J.-M., & Smith, D.S. (2020). Optical method for evaluation of shrinkage in two dimensions during drying of ceramic green bodies. Open Ceramics, 2, 100016. https://doi.org/10.1016/j.oceram.2020.100016
- Anjum, F., Ghaffar, A., Jamil, Y., & Majeed, M.I. (2019). Effect of sintering temperature on mechanical and thermophysical properties of biowaste-added fired clay bricks. Journal of Material Cycles and Waste Management, 21(3), 503-524. https://doi.org/10.1007/s10163-018-0810-x
- Bragança, S.R., & Bergmann, C.P. (2004). Traditional and glass powder porcelain: Technical and microstructure analysis. Journal of the European Ceramic Society, 24(8), 2383-2388. https://doi.org/10.1016/j.jeurceramsoc.2003.08.003
- Casasola, R., Rincón, J.M., & Romero, M. (2012). Glass-ceramic glazes for ceramic tiles: A review. Journal of Materials Science, 47(2), 553-582. https://doi.org/10.1007/s10853-011-5981-y