Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research on purification of tailings solutions from metal impurities at lead dust processing enterprises

Bagdat Altaibayev1, Nessipbay Tussupbayev2, Zhiger Kenzhetaev3, Omirserik Baigenzhenov1, Alibek Khabiyev1, Zekail Tyulyubayev4 , Alexey Leksin3

1Satbayev University, Almaty, Kazakhstan

2Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan

3Institute of High Technologies, Almaty, Kazakhstan

4Baiken – U, Kyzylorda, Kazakhstan


Min. miner. depos. 2024, 18(3):126-134


https://doi.org/10.33271/mining18.03.126

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to develop a technology for tailings solution purification using membrane nanofiltration to reduce waste volume and enterprise costs by reusing the purified water.

      Methods. The research uses polyamide nanofiltration membranes on a semi-industrial plant. The nanofiltration process is conducted at a pressure of 3.5 MPa with 30% permeate yield. The chemical composition of the solutions is analyzed using atomic-absorption and chemical methods.

      Findings. Removal of 69% arsenic, 68.5% zinc and 95.7% iron has been achieved under optimal conditions. The purified solution with a residual sulphuric acid concentration of ~3.5 g/l can be used again for leaching lead dust. The concentrated metal solution allows for additional zinc extraction. The use of technology reduces waste volumes by more than 30% and reduces the enterprise’s recycling costs.

      Originality. The research proposes a new environmentally friendly nanofiltration technology for tailings solution purification that can effectively remove heavy metals and extract valuable components. This approach uniquely integrates membrane nanofiltration at an optimized pressure of 3.5 MPa, achieving high removal rates of heavy metal ions such as As³⁺, AsO4³⁻, Zn²⁺, Fe²⁺, and Fe³⁺, while reducing waste by 30% and enabling the reuse of sulfuric acid and water in the leaching process, leading to significant cost and resource savings.

      Practical implications. Implementation of the proposed technology at lead dust processing enterprises reduces the costs of wastewater treatment, reduces the waste volume and allows for the reuse of water and acids in the production process.

      Keywords: membrane nanofiltration, heavy metals, wastewater treatment, lead dust, resource saving, extraction of valuable components


      REFERENCES

  1. Kunarbekova, M., Yeszhan, Y., Zharylkan, S., Alipuly, M., Zhantikeyev, U., Beisebayeva, A., Kudaibergenov, A., Rysbekov, K., Toktarbay, Z., & Azat, S. (2024). The state of the art of the mining and metallurgical industry in Kazakhstan and future perspectives: A systematic review. ES Materials & Manufacturing. http://doi.org/10.30919/esmm1219
  2. Atakhanova, Z., & Azhibay, S. (2023). Assessing economic sustainability of mining in Kazakhstan. Mineral Economics, 36(4), 719-731. https://doi.org/10.1007/s13563-023-00387-x
  3. Yulusov, S., Surkova, T.Y., Kozlov, V.A., & Barmenshinova, M. (2018). Application of hydrolytic precipitation for separation of rare-earth and impurity. Journal of Chemical Technology and Metallurgy, 53(1), 27-30.
  4. Shakiyeva, T.V., Sassykova, L.R., Dzhatkambayeva, U.N., Khamlenko, A.A., Zhakirova, N.K., Batyrbayeva, A.A., Azhigulova, R.N., Kubekova, Sh.N., Zhaxibayeva, Zh.M., Kozhaisakova, M.A., Zhusupova, L.A., Sendilvelan, S., & Bhaskar, K. (2021). Optimization of the oxidative cracking of fuel oil on catalysts obtained from Kazakhstan raw materials. Rasayan Journal of Chemistry, 14(2), 1056-1071. https://doi.org/10.31788/RJC.2021.1426152
  5. Mendygaliyev, A., Arshamov, Y., Selezneva, V., Yazikov, E., & Bekbotayeva, A. (2021). Prospects for application of multi-spectral earth sensing data in forecasting and searching for reservoir-infiltration uranium deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(446), 90-97. https://doi.org/10.32014/2021.2518-170X.39
  6. Tazhibekova, K., Shametova, A., Urazbekov, A., Akhmetzhanov, B., Akenov, S., & Tulupova, S. (2020). Enhancing eco-economic efficiency of mineral deposit exploration to achieve sustainable deve-lopment in the mining industry of Kazakhstan. Progress in Industrial Ecology, an International Journal, 14(3-4), 212-228. https://doi.org/10.1504/PIE.2020.113425
  7. Mostaghimi, K., & Behnamian, J. (2023). Waste minimization towards waste management and cleaner production strategies: A literature review. Environment, Development and Sustainability, 25(11), 12119-12166. https://doi.org/10.1007/s10668-022-02599-7
  8. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., & Batyrbayeva, A.A. (2016). Enrichment wastes’ processing of manganiferous ores with the use of mechanochemical methods. International Journal of Environmental and Science Education, 11(11), 4855-4869.
  9. Raimbekova, A.S., Kapralova, V.I., Popova, A.K., & Kubekova, S.N. (2022). The study of manganese phosphate materials based on enrichment wastes. Journal of Chemical Technology & Metallurgy, 57(1), 176-183.
  10. Raimbekova, A., Kapralova, V., Popova, A., Kubekova, S., Dalbanbay, A., Kalenova, A., Mustahimov, B., Yermekbayeva, S., & Myrzabekova, S. (2024). Corrosion behavior of mild steel in sodium sulfate solution in presence of phosphates of different composition. Journal of Chemical Technology and Metallurgy, 59(2), 367-377. https://doi.org/10.59957/jctm.v59.i2.2024.16
  11. Yousefian, M., Bascompta, M., Sanmiquel, L., & Vintró, C. (2023). Corporate social responsibility and economic growth in the mining industry. The Extractive Industries and Society, 13, 101226. https://doi.org/10.1016/j.exis.2023.101226
  12. Quayson, M., Bai, C., Mahmoudi, A., Hu, W., Chen, W., & Omoruyi, O. (2023). Designing a decision support tool for integrating ESG into the natural resource extraction industry for sustainable development using the ordinal priority approach. Resources Policy, 85, 103988. https://doi.org/10.1016/j.resourpol.2023.103988
  13. Sribna, Y., Skakovska, S., Paniuk, T., & Hrytsiuk, I. (2023). The economics of technology transfer in the environmental safety of enterprises for the energy transition. Economics Ecology Socium, 7(1), 84-96. https://doi.org/10.31520/2616-7107/2023.7.1-8
  14. Kubekova, S.N., Kapralova, V.I., & Telkov, S.A. (2016). Silicophosphate sorbents, based on ore-processing plants’ waste in Kazakhstan. International Journal of Environmental and Science Education, 11(12), 4985-4996. https://doi.org/10.32014/2019.2518-170X.93
  15. Sassykova, L., Sendilvelan, S., Aubakirov, Y.A., & Tashmukhambetova, Zh.Kh. (2019). Metal block catalysts for complex cleaning of harmful emissions of transport and the industry. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436), 12-23. https://doi.org/10.32014/2019.2518-170X.93
  16. Birniwa, A.H., Habibu, S., Abdullahi, S.S.A., Mohammad, R.E.A., Hussaini, A., Magaji, H., & Jagaba, A.H. (2023). Membrane technologies for heavy metals removal from water and wastewater: A mini review. Case Studies in Chemical and Environmental Engineering, 9, 100538. https://doi.org/10.1016/j.cscee.2023.100538
  17. Saleh, T.A., Mustaqeem, M., & Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617. https://doi.org/10.1016/j.enmm.2021.100617
  18. Vardhan, K.H., Kumar, P.S., & Panda, R.C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197
  19. Hualpa-Cutipa, E., Acosta, R.A.S., Sangay-Tucto, S., Beingolea, X.G.M., Gutierrez, G.T., & Zabarburú, I.N. (2022). Recent trends for treatment of environmental contaminants in wastewater: An integrated valorization of industrial wastewater. Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development, 337-368. https://doi.org/10.1016/B978-0-323-91180-1.00007-7
  20. Sathya, K., Nagarajan, K., Carlin Geor Malar, G., Rajalakshmi, S., & Raja Lakshmi, P. (2022). A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Applied Water Science, 12(4), 70. https://doi.org/10.1007/s13201-022-01594-7
  21. Jiang, Q., Wang, Y., Li, Y., Luo, J., & Xiong, J. (2023). Nanocomposite substrate-supported nanofiltration membrane for efficient treatment of rare earth wastewater. Results in Engineering, 18, 101040.https://doi.org/10.1016/j.rineng.2023.101040
  22. Meng, S., Wen, S., Han, G., Wang, X., & Feng, Q. (2022). Wastewater treatment in mineral processing of non-ferrous metal resources: a review. Water, 14(5), 726. https://doi.org/10.3390/w14050726
  23. Zhang, Y., Bu, X., Dong, X., Wang, Y., & Chen, Z. (2023). Nanofiltration combined with membrane capacitive deionization for efficient classification and recovery salts from simulated coal chemical industrial wastewater. Separation and Purification Technology, 322, 124156. https://doi.org/10.1016/j.seppur.2023.124156
  24. Du, S., Zhao, P., Wang, L., He, G., & Jiang, X. (2023). Progresses of advanced anti-fouling membrane and membrane processes for high salinity wastewater treatment. Results in Engineering, 17, 100995. https://doi.org/10.1016/j.rineng.2023.100995
  25. Portnov, V.S., Yurov, V.M., Maussymbayeva, A.D., Kassymov, S.S., & Zholmagambetov, N.R. (2017). Assessment of radiation risk at the population from pits, dumps and tailing dams of uranium mines. International Journal of Mining, Reclamation and Environment, 31(3), 205-211. https://doi.org/10.1080/17480930.2016.1268801
  26. Duczmal-Czernikiewicz, A., Baibatsha, A., Bekbotayeva, A., Omarova, G., & Baisalova, A. (2021). Ore minerals and metal distribution in tailings of sediment-hosted stratiform copper deposits from Poland and Kazakhstan. Minerals, 11(7), 752. https://doi.org/10.3390/min11070752
  27. Yesmakhanova, L.N., Tulenbayev, M.S., Chernyavskaya, N.P., Beglerova, S.T., Kabanbayev, A.B., Abildayev, A.A., & Maussymbayeva, A.D. (2021). Simulating the coal dust combustion process with the use of the real process parameters. ARPN Journal of Engineering and Applied Sciences, 16(22), 2395-2407.
  28. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  29. Okoye, C.O., Addey, C.I., Oderinde, O., Okoro, J.O., Uwamungu, J.Y., Ikechukwu, C.K., & Odii, E.C. (2022). Toxic chemicals and persistent organic pollutants associated with micro-and nanoplastics pollution. Chemical Engineering Journal Advances, 11, 100310. https://doi.org/10.1016/j.ceja.2022.100310
  30. Liu, S., Shi, J., Wang, J., Dai, Y., Li, H., Li, J., & Zhang, P. (2021). Interactions between microplastics and heavy metals in aquatic environments: a review. Frontiers in Microbiology, 12, 652520. https://doi.org/10.3389/fmicb.2021.652520
  31. Palit, S., & Hussain, C.M. (2018). Nanomembranes for environment. Handbook of Environmental Materials Management, 1-24. https://doi.org/10.1007/978-3-319-58538-3_31-1
  32. Yaqoob, A.A., Parveen, T., Umar, K., & Mohamad Ibrahim, M.N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water, 12(2), 495. https://doi.org/10.3390/w12020495
  33. Pezeshki, H., Hashemi, M., & Rajabi, S. (2023). Removal of arsenic as a potentially toxic element from drinking water by filtration: A mini review of nanofiltration and reverse osmosis techniques. Heliyon, 9(3), e14246. https://doi.org/10.1016/j.heliyon.2023.e14246
  34. Jang, J. (2023). Classification of membranes: With respect to pore size, material, and module type. Current Developments in Biotechnology and Bioengineering, 3-17. https://doi.org/10.1016/B978-0-443-19180-0.00009-2
  35. Shah, V., Panchal, B., Gona, C., Shah, M., & Prajapati, M. (2024). A comprehensive study on applications of nanomaterials in petroleum upstream and downstream industry. Environmental Science and Pollution Research, 31(10), 14406-14423. https://doi.org/10.1007/s11356-023-31569-3
  36. Yeszhanov, A.B., Korolkov, I.V., Güven, O., Melnikova, G.B., Dosmagambetova, S.S., Borissenko, A.N., & Zdorovets, M.V. (2024). Effect of hydrophobized PET TeMs membrane pore-size on saline water treatment by direct contact membrane distillation. RSC Advances, 14(6), 4034-4042.https://doi:10.1039/d3ra07475g
  37. Zhao, Y., Bai, J., Li, M., Liang, Y., Fan, A., Shan, L., & Guo, H. (2023). An antifouling and acid resistant loose NF membrane via synergic modification of PVP and PEI on PTFE substrate. Results in Engineering, 18, 101121. https://doi.org/10.1016/j.rineng.2023.101121
  38. Muslimova, I.B., Zhatkanbayeva, Z.K., Omertasov, D.D., Melnikova, G.B., Yeszhanov, A.B., Güven, O., &Korolkov, I. V. (2023). Stimuli-responsive track-etched membranes for separation of water-oil emulsions. Membranes, 13(5), 523. https://doi.org/10.3390/membranes13050523
  39. Tripathy, D.B., & Gupta, A. (2023). Nanomembranes-affiliated water remediation: Chronology, properties, classification, challenges and future prospects. Membranes, 13(8), 713. https://doi.org/10.3390/membranes13080713
  40. Tyszer, M., Tomaszewska, B., & Bodzek, M. (2020). Comparison of the efficiency of micro-pollutant removal from geothermal water on a laboratory and a semi-industrial scale. Desalination and Water Treatment, 186, 155-164.https://doi.org/10.5004/dwt.2020.25466
  41. San-Martín, M.I., Alonso, R.M., Ivars-Barceló, F., Escapa, A., & Morán, A. (2023). Complete arsenic removal from water using biocatalytic systems based on anaerobic films grown on carbon fibers. Catalysis Today, 423, 114269. https://doi.org/10.1016/j.cattod.2023.114269
  42. Worou, C.N., Chen, Z.L., & Bacharou, T. (2021). Arsenic removal from water by nanofiltration membrane: Potentials and limitations. Water Practice & Technology, 16(2), 291-319. https://doi:10.2166/wpt.2021.018
  43. Altaibayev, B.T., Khabiyev, A.T., Baigenzhenov, O.S., Bulenbayev, M.Z., & Turan, M.D. (2020). Extraction of copper from pregnant leaching solutions of lead dusts by liquid extraction. Complex Use of Mineral Resources, 314(3), 50-55. https://doi.org/10.31643/2020/6445.26
  44. Baigenzhenov, O.S., Akkenzheyeva, A., Turkmenbayeva, M., Kizdarbekova, M., & Turan, M.D. (2021). Extraction of non-ferrous metals and rhenium from lead dusts of copper production. Rasayan Journal of Chemistry, 14(4), 2304-2310. http://doi.org/10.31788/RJC.2021.1446359
  45. Siddique, T.A., Dutta, N.K., & Roy Choudhury, N. (2020). Nanofiltration for arsenic removal: challenges, recent developments, and perspectives. Nanomaterials, 10(7), 1323. https://doi:10.3390/nano10071323
  46. Uddin, M.T., Mozumder, M.S.I., Islam, M.A., Deowan, S.A., & Hoinkis, J. (2007). Nanofiltration membrane process for the removal of arsenic from drinking water. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 30(9), 1248-1254. https://doi.org/10.1002/ceat.200700169
  47. Лицензия Creative Commons