Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Rationale and modeling of technology for complex bottom-hole zone de-stressing of gas-dynamically active rock mass

Hennadii Symanovych1, Iryna Lisovytska1, Mykola Odnovol1, Ruslan Ahaiev2, Serhii Poimanov1

1Dnipro University of Technology, Dnipro, Ukraine

2M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine, Dnipro, Ukraine


Min. miner. depos. 2024, 18(2):83-92


https://doi.org/10.33271/mining18.02.083

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to substantiate the geological principles and peculiarities of modeling complex de-stressing of a stressed bottom-hole mass during the construction of mine workings at depths of more than 1000 m.

      Methods. A comprehensive research methodology is proposed, which consists of conducting a computational experiment for calculating a complex de-stressing scheme and analyzing the stress-strain state (SSS) of the bottom-hole mass in the most informative mine working cross-sections, conducting experimental studies on the effectiveness of the method using the developed methodology for observing rock pressure manifestations and estimating energy consumption on the tunneling face rock destruction.

      Findings. A combination of two methods for de-stressing a rock mass adjacent to the tunneling face using advance slots has been substantiated. A geomechanical model has been created that takes into account the specifics of the proposed method. The stress-strain state of the rock mass adjacent to the tunneling face has been calculated in a series of cross-sections and longitudinal section of mine working.

      Originality. Three geotechnological principles of simultaneous de-stressing of both rocks adjacent to the face and rocks within the mass along the mine working route has been formulated and elaborated, embodied in the construction of a geomechanical model of complex adjacent rock mass de-stressing. Based on the obtained stress-strain state, five positions of have been developed for complex consideration of changes in the distribution fields of determining stress components. The methodological principle for assessing energy consumption for rock destruction has been substantiated, and an evidence base has been created to confirm the advantages of the proposed mine working construction technology at depths above 1000 m in a gas-dynamically active rock mass.

      Practical implications. The method for complex de-stressing the rock mass adjacent to the tunneling face, using pre-drilled wells and de-stressing slots, is proposed. Experimental studies confirm the proposed method feasibility in three directions for safe and resource-saving construction of mine workings in a gas-dynamically active rock mass at great depths. Calculations have proven that energy consumption for bottom-hole rock destruction has decreased in the range of 15-26%.

      Keywords: mine, gas-dynamic phenomena, predrilled wells, stress-strain state, field and in-seam working, de-stressing slot


      REFERENCES

  1. Haidai, O., Ruskykh, V., Ulanova, N., Prykhodko, V., Cabana, E.C., Dychkovskyi, R., Howaniec, N., & Smolinski, A. (2022). Mine field preparation and coal mining in Western Donbas: energy security of Ukraine – A case study. Energies, 15(13), 4653. https://doi.org/10.3390/en15134653
  2. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 238 p. https://doi.org/10.1201/b17547
  3. Tiess, G., Sokolova, I., & Klochkov, S. (2021). Effective mineral policy as a key factor for sustainable economy. Ukrainian Geologist, 1-2(44-45), 34-40. https://doi.org/10.53087/ug.2021.1-2(44-45).238854
  4. Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum 2007, 129-132. https://doi.org/10.1201/noe041543670a0.ch16
  5. Yermakov, O., & Kostetska, I. (2022). Environmental challenges of the green economy: Case of Ukraine. IOP Conference Series: Earth and Environmental Science, 1111(1), 012002. https://doi.org/10.1088/1755- 1315/1111/1/012002
  6. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, 10, 878977. https://doi.org/10.3389/fenvs.2022.878977
  7. Mhlanga, D. (2022). Stakeholder capitalism, the fourth industrial revolution (4IR), and sustainable development: Issues to be resolved. Sustainability, 14(7), 3902. https://doi.org/10.3390/su14073902
  8. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2-19. https://doi.org/10.46873/2300-3960.1371
  9. Bondar, R. (2021). V Ukraini biznes udaie, shcho ESG-zminy yoho ne torknutsia. Tse iliuziia i hotuvatys treba vzhe. Forbes Ukraine. Retrieved from: http://surl.li/ftxqn
  10. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rocks weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, 66, 03001. https://doi.org/10.1051/e3sconf/20186603001
  11. Bondarenko, V., Kovalevska, I., Sheka, I., & Sachko, R. (2023). Results of research on the stability of mine workings, fixed by arched supports made of composite materials, in the conditions of the Pokrovske Mine Administration. IOP Conference Series: Earth and Environmental Science, 1156(1), 012011. https://doi.org/10.1088/1755-1315/1156/1/012011
  12. Sobolev, V.V., Chernay, A.V., Zberovskiy, V.V., Polyashov, A.S., & Fillipov, A.O. (2014). Fizicheskaya mekhanika vybrosoopasnykh ugley. Zaporizhzhia, Ukraina: Pryvoz Prynt, 304 s.
  13. Griadushchiy, Y., Korz, P., Koval, O., Bondarenko, V., & Dychkovskiy, R. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 2-7. https://doi.org/10.1201/noe0415436700.ch1
  14. Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), 134, 977-982. https://doi.org/10.1051/jp4:2006134149
  15. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 24-30.
  16. Black, D.J. (2019). Review of coal and gas outburst in Australian underground coal mines. International Journal of Mining Science and Technology, 29(6), 815-824. https://doi.org/10.1016/j.ijmst.2019.01.007
  17. Wasilewski, S. (2020). Gas-dynamic phenomena caused by rock mass tremors and rock bursts. International Journal of Mining Science and Technology, 30(3), 413-420. https://doi.org/10.1016/j.ijmst.2020.03.012
  18. Simser, B.P. (2019). Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1036-1043. https://doi.org/10.1016/j.jrmge.2019.07.005
  19. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniyenko, V., & Zhomyruk, R. (2024). Modelling mineral reserve assessment using discrete kriging methods. Mining of Mineral Deposits, 18(1), 89-98. https://doi.org/10.33271/mining18.01.089
  20. Zhang, W., Ma, N., Ma, J., Li, C., & Ren, J. (2020). Mechanism of rock burst revealed by numerical simulation and energy calculation. Shock and Vibration, 1-15. https://doi.org/10.1155/2020/8862849
  21. Ratov, B.T., Fedorov, B.V., Syzdykov, A.Kh., Zakenov, S.T., & Sudakov, A.K. (2021). The main directions of modernization of rock-destroying tools for drilling solid mineral resources. 21st International Multidisciplinary Scientific GeoConference, 503-514. https://doi.Org/10.5593/sgem2021/l.l/s03.062
  22. Zhang, W., Mu, C., Xu, D., & Li, Z. (2021). Energy action mechanism of coal and gas outburst induced by rockburst. Shock and Vibration, 1-14. https://doi.org/10.1155/2021/5553914
  23. NPAOP 10.0-1.01-10. (2015). Pravyla bezpeky u vuhilnykh shakhtakh. Kharkiv, Ukraina: Fort, 248 s.
  24. SOU-P 10.1.00174088.011:2005. (2005). Pravyla vedennia hirnychykh robit na plastakh, skhylnykh do hazodynamichnykh iavyshch. Kyiv, Ukraina: Minvuhleprom Ukrainy.
  25. SOU-P 05.1.00174088.033:2012. (2013). Prognoz i predotvrashchenie vybrosov peschanikov na glubokikh shakhtakh. Kyiv, Ukraina: Minenerhovuhillia Ukrainy.
  26. SOU-P 10.1.00174088.017:2009. (2009). Pravila peresecheniya gornymi vyrabotkami zon geologicheskikh narusheniy na plastakh, sklonnykh k vnezapnym vybrosam uglya i gaza. Kyiv, Ukraina: Minvuhleprom Ukrainy.
  27. SOU-P 10.1.00174088.029:2011. (2011). Pravila otneseniya ugol’nykh plastov k kategoriyam vybrosoopasnosti. Kyiv, Ukraina: Minenerhovuhillia Ukrainy.
  28. SOU-P 10.1.00174088.031:2011. (2011). Kontrol’ za provede-niem meropriyatiy i tekhnologicheskikh protsessov po para-metram akusticheskogo signala pri raskrytii sklonnykh k GDYa ugol’nykh plastov. Kyiv, Ukraina: Minenerhovuhillia Ukrainy.
  29. Zhulay, Y., Zberovskiy, V., Angelovskiy, A., & Chugunkov, I. (2012). Hydrodynamic cavitation in energy-saving technological processes of mining sector. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 61-65. https://doi.org/10.1201/b13157-11
  30. Mineev, S.P. (2016). Prognoz i sposoby bor’by s gazodinamicheskimi yavleniyami na shakhtakh Ukrainy. Mariupol, Ukraina: Skhidnyi vydavnychyi dim, 254 s.
  31. Mineev, S.P., Usov, O.A., & Polyakov Yu.Ye. (2021). Napornaya fil’tratsiya v ugleporodnom massive. Dnipro, Ukraina: Bielaia, 260 s.
  32. Minieiev, S.P., & Kostrytsia, A.O. (2021). Pytannia korehuvannia normatyvnykh dokumentiv shchodo bezpechnoho provedennia vyrobok prokhidnytskym kombainom po vykydonebezpechnomu piskovyku abo poblyzu noho na shakhtakh Ukrainy. Naukovyy Visnyk DonNTU, 1(6)-2(7), 111-122.
  33. Ahaiev, R., Prytula, D., Kliuiev, E., Cabana, E., Kabakova, L. (2020). The determination of the influence degree of mining-geological and mining-technical factors on the safety of the degassing system. E3S Web of Conferences, 168, 00040 https://doi.org/10.1051/e3sconf/202016800040
  34. Bezruchko, K.A. (2015). Opyt primeneniya metoda lokal’nogo prognoza vybrosoopasnosti peschanikov na shakhtakh Donbassa. Ugol’ Ukrainy, 12, 42-44.
  35. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, 277, 137-146. https://doi.org/10.4028/www.scientific.net/SSP.277.137
  36. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48-55. https://doi.org/10.15587/1729-4061.2017.112313
  37. Mineev, S.P., Potapenko, A.A. Mkhatvari, T.Ya., Nikiforov, A.V., Kuzyara, S.V., & Timofeev, E.I. (2013). Povyshenie effektivnosti gidrorykhleniya vybrosoopasnykh ugol’nykh plastov. Donetsk, Ukraina: Skhidnyi vydavnychyi dim, 216 s.
  38. Baysarov, L.V., Il’yashov, M.A., & Demchenko, A.I. (2005). Geomekhanika i tekhnologiya podderzhaniya povtorno ispol’zuemykh gornykh vyrabotok. Dnipropetrovsk, Ukraina: Lira LTD, 240 s.
  39. Zberovskyi, V., Ahaiev, R., Vlasenko, V., & Prytula, D. (2024). Hydrodynamic impact as a way of controlling the state of the coal-gas system: analysis and data processing. IOP Conference Series: Earth and Environmental Science, 1348(1), 012039. https://doi.org/10.1088/1755-1315/1348/1/012039
  40. Zberovskyi, V., Bubnova, O., & Babii, K. (2018). Specifics of hydro-loosening of coal seams with account of rocks displacement parameters. E3S Web of Conferences, 60, 00025. https://doi.org/10.1051/e3sconf/20186000025
  41. Zberovskyi, V., Zhulai, Y., & Mirnyi, S. (2019). Evaluation of the cavitation generator efficiency in the hydro impulsive loosening of a coal-bed. E3S Web of Conferences, 109, 00123. https://doi.org/10.1051/e3sconf/201910900123
  42. Zberovskyi, V. (2019). Control of the mud pulse method the loosening of coal layers by amplitude-frequency recommendation of acoustic signal by the APSS-1 system. E3S Web of Conferences, 109, 00122. https://doi.org/10.1051/e3sconf/201910900122
  43. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., & Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 5-10.
  44. Bazaluk, O., Velychkovych, A., Ropyak, L., Pashechko, M., Pryhorovska, T., & Lozynskyi, V. (2021). Influence of heavy weight drill pipe material and drill bit manufacturing errors on stress state of steel blades. Energies, 14(14), 4198. https://doi.org/10.3390/en14144198
  45. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 26-32.
  46. Guo, C., Tan, T., Ma, L., Chang, S., & Zhao, K. (2022). Numerical simulation and application of transient electromagnetic detection method in mine water-bearing collapse column based on time-domain finite element method. Applied Sciences, 12(22), 11331. https://doi.org/10.3390/app122211331
  47. Kovalevs’ka, I., Fomychov, V., Illiashov, M., & Chervatuk, V. (2012). The formation of the finite-element model of the system “undermined massif-support of stope”. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 73-80. https://doi.org/10.1201/b13157-13
  48. Baymakhan, R.B., Muta, A.N., Tileikhan, A., & Kozhogulov, K.C. (2023). On the use of the finite element method in the study of the stress-strain state of the contour of the Annie Cave on Mount Arsia. Engineering Journal of Satbayev University, 145(2), 31-36. https://doi.org/10.51301/ejsu.2023.i2.05
  49. Moldagozhina, M.K., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  50. Prykhodko, V., Ulanova, N., Haidai, O., & Klymenko, D. (2018). Mathematical modeling of tight roof periodical fal-ling. E3S Web of Conferences, 60, 00020. https://doi.org/10.1051/e3sconf/20186000020
  51. Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element method at multivariate calculation of “mine massif – combined support” system. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 7-14. https://doi.org/10.1201/b13157-4
  52. Simanovich, G., Serdiuk, V., Fomichov, I., & Bondarenko, V. (2007). Research of rock stresses and deformations around mining workings. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 47-56. https://doi.org/10.1201/noe0415436700.ch6
  53. Dychkovskiy, R., & Bondarenko, V. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the Underground Mining Faculty (National Mining University). International Mining Forum: New Technological Solutions in Underground Mining, 21-25. https://doi.org/10.1201/noe0415401173.ch3
  54. Bondarenko V., Kovalevska, I., Symanovych H., Barabash M., & Salieiev I. (2021). Principles for certain geomechanics problems solution during overworking of mine workings. E3S Web of Conferences, 280, 01007. https://doi.org/10.1051/e3sconf/202128001007
  55. Bondarenko, V., Salieiev, І., Symanovych, H., Kovalevska, І., & Shyshov, M. (2023). Substantiating the patterns of geomechanical factors influence on the shear parameters of the coal-overlaying formation requiring degassing at high advance rates of stoping faces in the Western Donbas. Inżynieria Mineralna, 1(1(51)), 23-32. http://doi.org/10.29227/IM-2023-01-03
  56. Bondarenko, V., Kovalevska, I., Symanovych, H., & Husiev, O. (2023). Changes in the rock mass geomechanical properties with account of the Chaos Theory based on a computational experiment. Springer Proceedings in Complexity, 41-52. https://doi.org/10.1007/978-3-031-27082-6_4
  57. Kovalevska, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 159-163. https://doi.org/10.1201/b16354-28
  58. Bondarenko, V.I., Griadushchiy, Y.B., Dychkovskiy, R.O., Korz, P.P., & Koval, O.I. (2007). Technical, technological and economic aspects of thin-seams coal mining. International Mining Forum, 1-7.
  59. Bondarenko V.I., Kovalevska, I., Biletskyi, V.S., & Desna, N.A. (2022). Optimization principles implementation in the innovative technologies for reused extraction workings maintenance. Petroleum and Coal, 64(2), 424-435.
  60. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  61. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining – Proceedings of the school of underground mining, 238 p. https://doi.org/10.1201/b13157
  62. Petlovanyi, M, Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2021). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572-1582.
  63. Bondarenko, V., Kovalevska, I., Symanovych, H., Poimanov, S., & Pochepov, V. (2020). Method for optimizing the protecting pillars parameters in underground coal mining. E3S Web of Conferences, 166, 02009. https://doi.org/10.1051/e3sconf/202016602009
  64. Kovalevska, I., Vivcharenko, O., & Snigur, V. (2013). Specifics of percarbonic rock mass displacement in longwalls end areas and extraction workings. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 29-33. https://doi.org/10.1201/b16354-6
  65. Kovalevska, I.A., Bondarenko, V.I., Symanovych, H.A., Sheka, I.V., & Tsivka, Ye.S. (2022). Modeling the rational parameters for innovative fastening systems in mine workings using composite materials. 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium – Challenges in Rock Mechanics and Rock Engineering, 1538-1543.
  66. Bondarenko, V., Kovalevska, I., Krasnyk, V., Chernyak, V., Haidai, O., Sachko, R., & Vivcharenko, I. (2024). Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations. Mining of Mineral Deposits, 18(1), 67-81. https://doi.org/10.33271/mining18.01.067
  67. Koptikov, V.P., Bokiy, B.V., Mineev, S.P., Yuzhanin, I.A., & Nikiforov, A.V. (2016). Sovershenstvovanie sposobov i sredstv bezopasnoy razrabotki ugol’nykh plastov, sklonnykh k gazodinamicheskim yavleniyam. Donetsk, Ukraina: Promin, 480 s.
  68. Klymenko, D.V. (2018). Zakonomirnosti proiaviv i seismoakustychnyi prohnoz hazodynamichnykh iavyshch pry vidpratsiuvanni vuhilnykh plastiv. PhD Thesis. Dnipro, Ukraina: NTU “DP”.
  69. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p. https://doi.org/10.1201/b19901
  70. Kovalevska, I., Symanovych, Н., Jarosz, J., Barabash, M., & Husiev, O. (2020). Geomechanics of overworked mine working support resistance in the laminal massif of soft rocks. E3S Web of Conferences, 201, 01003. https://doi.org/10.1051/e3sconf/202020101003
  71. Dubinski, J., Stec, K., & Bukowska, M. (2019). Geomechanical and tectonophysical conditions of mining-induced seismicity in the Upper Silesian Coal Basin in Poland: A case study. Archives of Mining Sciences, 64(1), 163-180. https://doi.org/10.24425/ams.2019.126278
  72. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  73. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35
  74. Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the subsoil development. New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 161-167. https://doi.org/10.1201/b19901-30
  75. Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 279-292
  76. Лицензия Creative Commons