Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Ore dilution control when mining low-thickness ore bodies using a system of sublevel drifts

Aibek Mussin1, Adilzhan Kydrashov2, Zhanar Asanova1, Yerbolsyn Abdrakhman1, Dina Ivadilinova1

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2Zhangir Khan West Kazakhstan Agrarian Technical University, Uralsk, Kazakhstan


Min. miner. depos. 2024, 18(2):18-27


https://doi.org/10.33271/mining18.02.018

Full text (PDF)


      ABSTRACT

      Purpose. The research is aimed at substantiating the optimal parameters of blast-hole ore breaking to reduce the rock mass destruction when mining low-thickness vein deposits using the mining system of sublevel drifts (SD). The focus is on analyzing the impact of blasting on the out-contour rock mass during the blast-hole breaking process.

      Methods. The three-dimensional block model is constructed using rating classifications of rocks based on studying their strength properties and structural peculiarities. The inelastic deformation zones around the stoping extraction are determined by numerical analysis using the finite element method in 2D formulation. Experimental blasts are assessed by varying the blast-hole drilling scheme depending on the stability rating.

      Findings. During the experimental-industrial tests, rational blast-hole drilling schemes have been substantiated, contributing to maintaining the stability of the host rocks when mining low-thickness veins.

      Originality. Effective methods for reducing the ore dilution have been substantiated, which take into account not only the strength properties and structural peculiarities of rocks, but also their seismic impact from blasting on the out-contour rock mass stability when mining low-thickness deposits using a system of sublevel drifts.

      Practical implications. Practical significance is in the possibility of minimizing the percentage of mineral dilution when mining low-thickness ore bodies using a system of sublevel drifts, which can significantly reduce the cost of mined minerals by reducing ore losses caused by the rock mass destruction during mining operations.

      Keywords: ore, dilution, drilling and blasting operations, stope space, rocks, deposit


      REFERENCES

  1. Xu, S., Liang, R., Suorineni, F.T., & Li, Y. (2021). Evaluation of the use of sublevel open stoping in the mining of moderately dipping medium-thick orebodies. International Journal of Mining Science and Technology, 31(2), 333-346. https://doi.org/10.1016/j.ijmst.2020.12.002
  2. Zeylik, B., Arshamov, Y., Baratov, R., & Bekbotayeva, A. (2021). New technology for mineral deposits prediction to identify prospective areas in the Zhezkazgan ore region. Mining of Mineral Deposits, 15(2), 134-142. https://doi.org/10.33271/mining15.02.134
  3. Togizov, K., Issayeva, L., Muratkhanov, D., Kurmangazhina, M., Swęd, M., & Duczmal-Czernikiewicz, A. (2023). Rare earth elements in the Shok-Karagay ore fields (Syrymbet ore district, northern Kazakhstan) and visualisation of the deposits using the geography information system. Minerals, 13(11), 1458. https://doi.org/10.3390/min13111458
  4. Wu, J. (2020). Research on sublevel open stoping recovery processes of inclined medium-thick orebody on the basis of physical simulation experiments. Plos One, 15(5), e0232640. https://doi.org/10.1371/journal.pone.0232640
  5. Raimzhanov, B.R., Khakimov, Sh.I., Khamzaev, S.A., & Ravshanov, A.A. (2021). Mining systems with shrinkage stoping and the formation of artificial pillars to support unstable rocks of vein deposits. Galaxy International Interdisciplinary Research Journal, 9(10), 746-752.
  6. Kalaitzidou, K., Pagona, E., Skyfta, G., Tzamos, E., Zouboulis, A., & Mitrakas, M. (2023). Chromite ore addition to serpentinized magnesite mining wastes for the production of refractory products following thermal treatment. International Journal of Environmental Science and Technology, 20(12), 13561-13570. https://doi.org/10.1007/s13762-023-04933-6
  7. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901
  8. Li, S., Zou, P., Yu, H., Hu, B., & Wang, X. (2023). Advantages of backfill mining method for small and medium-sized mines in China: Safe, eco-friendly, and efficient mining. Applied Sciences, 13(12), 7280. https://doi.org/10.3390/app13127280
  9. Jang, H., & Topal, E. (2024). Underground stope dilution optimization applying machine learning. Applications of Artificial Intelligence in Mining, Geotechnical and Geoengineering, 315-323. https://doi.org/10.1016/B978-0-443-18764-3.00006-0
  10. Jorquera, M., Korzeniowski, W., & Skrzypkowski, K. (2023). Prediction of dilution in sublevel stoping through machine learning algorithms. IOP Conference Series: Earth and Environmental Science, 1189(1), 012008. https://doi.org/10.1088/1755-1315/1189/1/012008
  11. Ivadilinova, D., Issabek, T., Takhanov, D., & Yeskenova, G. (2023). Predicting underground mining impact on the earth’s surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 32-37. https://doi.org/10.33271/nvngu/2023-1/032
  12. Pysmennyi, S., Fedko, M., Shvaher, N., & Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, 201, 01022. https://doi.org/10.1051/e3sconf/202020101022
  13. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 265-269. https://doi.org/10.1201/b19901-46
  14. Tsoy, B.V., Myrzakhmetov, S.S., Bekbotaeva, A.A., & Yusupov, Kh.A. (2022). New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits. Gornyi Zhurnal, 7, 27-31. https://doi.org/10.17580/gzh.2022.07.04
  15. Mussin, A., Imashev, A., Matayev, A., Abeuov, Ye., Shaike, N., & Kuttybayev, A. (2023). Reduction of ore dilution when mining low-thickness ore bodies by means of artificial maintenance of the mined-out area. Mining of Mineral Deposits, 17(1), 35-42. https://doi.org/10.33271/mining17.01.035
  16. Pysmennyi, S., Chukharev, S., Kourouma, I.K., Kalinichenko, V., & Matsui, A. (2023). Development of technologies for mining ores with instable hanging wall rocks. Inżynieria Mineralna, 1(1(51), 103-112. https://doi.org/10.29227/IM-2023-01-13
  17. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, 238 p. https://doi.org/10.1201/b13157
  18. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  19. Stephenson, R.M., & Sandy, M.P. (2013). Optimising stope design and ground support – A case study. International Symposium on Ground Support in Mining and Underground Construction, 387-400. https://doi.org/10.36487/ACG_rep/1304_25_Stephenson
  20. Hassell, R., de Vries, R., Player, J., & Rajapakse, A. (2015). Dugald River trial stoping, overall hanging wall behaviour. Design Methods 2015: Proceedings of the International Seminar on Design Methods in Underground Mining, 185-198. https://doi.org/10.36487/ACG_rep/1511_08_Hassell
  21. Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189-236. https://doi.org/10.1007/BF01239496
  22. Fedorov, L.N., & Bruk, L. (2007). Ot estestvennoy kuskovatosti v prirode k modeli razrusheniya gornykh porod. Zapiski Gornogo Instituta, 171, 144-150.
  23. Hussan, B., Takhanov, D.K., Oralbay, A.O., & Kuzmin, S.L. (2021). Assessing the quality of drilling-and-blasting operations at the open pit limiting contour. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 42-48. https://doi.org/10.33271/nvngu/2021-6/042
  24. Bakhtybaev, N.B., Kydrashov, A.B., Muratuly, B., Bogzhanova, Zh.K., & Abdieva, L.M. (2021). Issledovanie po ustanovke pripochvennykh zakonturnykh ankerov na shakhte “Kazakhstanskaya” UD AO “ArselorMittal Temirtau”. Ugol, 10, 4-8. https://doi.org/10.18796/0041-5790-2021-10-4-8
  25. Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655-667. https://doi.org/10.46544/ams.v28i3.10
  26. Yussupov, K., Myrzakhmetov, S., Aben, K., Nehrii, S., & Nehrii, T. (2021). Optimization of the drilling-and-blasting process to improve fragmentation by creating of a preliminary stress in a block. E3S Web of Conferences, 280, 08015. https://doi.org/10.1051/e3sconf/202128008015
  27. Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determining the performance of explosives for blasting management. Rudarsko Geolosko Naftni Zbornik, 38(3), 19-28. https://doi.org/10.17794/rgn.2023.3.2
  28. Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, 280, 08001. https://doi.org/10.1051/e3sconf/202128008001
  29. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 37-41. https://doi.org/10.29202/nvngu/2019-1/20
  30. Imashev, A.Z., Sudarikov, A.E., Musin, A.A., Suimbayeva, A.M., & Asan, S.Y. (2021). Improving the quality of blasting indicators by studying the natural stress field and the impact of the blast force on the rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(448), 30-35. https://doi.org/10.32014/2021.2518-170X.78
  31. Imashev, A.Zh., Suimbayeva, A.M., Abdibaitov, Sh.A., Musin, A.A., & Asan, S.Yu. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. Ugol, 6, 4-9. https://doi.org/10.18796/0041-5790-2020-6-4-9
  32. Ignatiev, S.A., Sudarikov, A.E., & Imashev, A.Z. (2021). Determination of the stress-strain state of rock mass and zone of inelastic deformation around underground mine excavation using modern methods of numerical modelling. Journal of Sustainable Mining, 20(3), 7. https://doi.org/10.46873/2300-3960.1324
  33. Jiang, D. (2023). Stress, strain, and elasticity. Continuum Micromechanics: Theory and Application to Multiscale Tectonics, 57-96. https://doi.org/10.1007/978-3-031-23313-5_3
  34. Krukovskyi, O., & Krukovska, V. (2019). Numerical simulation of the stress state of the layered gas-bearing rocks in the bottom of mine working. E3S Web of Conferences, 109, 00043. https://doi.org/10.1051/e3sconf/201910900043
  35. Jendryś, M., Duży, S., & Dyduch, G. (2020). Analysis of stress-strain states in the vicinity of mining excavations in a rock mass with variable mechanical properties. Energies, 13(21), 5567. https://doi.org/10.3390/en13215567
  36. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, 201, 01039. https://doi.org/10.1051/e3sconf/202020101039
  37. Ganesan, G., & Mishra, A.K. (2024). Development of a directional continuous joint adjustment rating for the rock mass rating system. Arabian Journal of Geosciences, 17(2), 1-13. https://doi.org/10.1007/s12517-024-11868-w
  38. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A., & Jangulova, G. (2023). Geophysical studies of rock distortion in mining operations in complex geological conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 57-62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023
  39. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., & Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 58-64.
  40. Takhanov, D., Balpanova, M., Kenetayeva, A., Rabatuly, M., Zholdybayeva, G., & Usupayev, S. (2023). Risk assessments for rockfalls taking into account the structure of the rock mass. E3S Web of Conferences, 44, 04012. https://doi.org/10.1051/e3sconf/202344304012
  41. Li, X., Chen, Z., Tang, L., Chen, C., Li, T., Ling, J., & Rui, Y. (2024). Predicting rock mass rating ahead of the tunnel face with Bayesian estimation. Frontiers in Earth Science, 12, 1333117. https://doi.org/10.3389/feart.2024.1333117
  42. Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown failure criterion-2002 edition. Proceedings of NARMS-Tac, 1(1), 267-273.
  43. Mousavi, S.A., Ahangari, K., & Goshtasbi, K. (2023). Impact of the layering of blast-induced damage factors in the Hoek-Brown failure criterion on the bench damage monitoring of mines. Rudarsko Geolosko Naftni Zbornik, 38(1), 93-104. https://doi.org/10.17794/rgn.2023.1.9
  44. Лицензия Creative Commons