Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Determining the parameters for the overlying stratum caving zones during re-peated mining of pillars

Daulet Takhanov1, Abzal Zhienbayev2, Madiyar Zharaspaev2,3

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2Kazakhmys Corporation LLP, Zhezkazgan, Kazakhstan

3Scientific and Technical Center for Industrial Safety LLP, Karaganda, Kazakhstan


Min. miner. depos. 2024, 18(2):93-103


https://doi.org/10.33271/mining18.02.093

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to determine the parameters for the overlying stratum caving zones above the mined-out space during repeated mining of pillars at the Zhomart Mine of the Zhaman-Aybat field for the purpose of predicting hazardous zones of influence of mining operations.

      Methods. Research includes an analysis of the results of previous in-situ studies conducted using seismic surveys, as well as modeling with the Examine2D software to determine the stress-strain state of the overlying stratum mass. The elastic and strength characteristics of an anisotropic mass are used for modeling, taking into account the generalized Hoek-Brown criterion with the Geological Strength Index (GSI) based on a geomechanical description of the mass quality. Comparative analysis of modeling results with seismic survey results is conducted to confirm the effectiveness of the developed methodology.

      Findings. The research provides an opportunity to determine the overlying stratum caving parameters, such as the caving arch height and the condition for complete undermining of the overlying stratum at the Zhaman-Aybat field at different spans of the mined-out space (from 50 to 350 with a step of 50 m, reaching the maximum span of 370 m).

      Originality. . It has been determined that the caving arch height depends on the outcrop span and increases exponentially (hcav = 16.473 e0.008Le). In addition, the condition of the earth’s surface complete undermining has been identified depending on the depth of the site to be gotten.

      Practical implications.The research results can be used to develop a normative document for calculating the earth’s surface shear during the repeated mining of pillars at the Zhomart Mine of the Zhaman-Aybat field. The data obtained will also be useful in planning repeated mining and predicting the earth’s surface shear to avoid negative impacts of mining operations on surface structures.

      Keywords: repeated mining, undermining, pillar, caving arch, mining operations, seismic survey, modeling, field


      REFERENCES

  1. Galvin, J.M. (2016). Ground engineering-principles and practices for underground coal mining. Sydney, Australia: Springer, 684 p. https://doi.org/10.1007/978-3-319-25005-2
  2. Zhiyenbayev, A. (2023). Geomekhanicheskoe obosnovanie povtornoy razrabotkitselikov na osnove dannykh kompleksnogo monitoringa sostoyaniya massiva gornykh porod. PhD. Karaganda, Kazakhstan: Abylkas Saginov Karaganda Technical University.
  3. Guo, Y., & Miao, Y. (2022). Study on stope stability in continuous mining of long-dip, thin orebody by room – pillar method. Sustainability, 14(15), 9601. https://doi.org/10.3390/su14159601
  4. Boguslavskiy, E.I., & Andreev, M.N. (2014). Tekhnologiya chastichnoy otrabotki mezhdukamernykh tselikov pri etazhno-kamernoy sisteme razrabotki korobkovskogo mestorozhdeniya kurskoy magnitnoy anomalii. Zapiski Gornogo Instituta, 207, 12-16.
  5. Zhang, Y., Qi, H., Li, C., & Zhou, J. (2024). Enhancing safety, sustainability, and economics in mining through innovative pillar design: A state-of-the-art review. Journal of Safety and Sustainability, 1(1), 53-73. https://doi.org/10.1016/j.jsasus.2023.11.001
  6. Napa-García, G.F., Câmara, T.R., & Torres, V.F.N. (2019). Optimization of room-and-pillar dimensions using automated numerical models. International Journal of Mining Science and Technology, 29(5), 797-801. https://doi.org/10.1016/j.ijmst.2019.02.003
  7. Toderas, M. (2024). Stability analysis of the exploitation system with room and pillar by analytical methods. Applied Sciences, 14(5), 1827. https://doi.org/10.3390/app14051827
  8. Dixon, J.D. (2021). Spiral slot-and-pillar mining with backfill. Innovations in Mining Backfill Technology, 225-234. https://doi.org/10.1201/9781003211488-27
  9. Skrzypkowski, K., Gómez, R., Zagórski, K., Zagórska, A., & Gómez-Espina, R. (2022). Review of underground mining methods in world-class base metal deposits: Experiences from Poland and Chile. Energies, 16(1), 148. https://doi.org/10.3390/en16010148
  10. Telkov, Sh.A., Motovilov, I.Tu., Barmenshinova, M.B., & Abisheva, Z.S. (2021). Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud, 6, 9-15. https://doi.org/10.17580/or.2021.06.02
  11. Motovilov, I.Y., Telkov, S.A., Barmenshinova, M.B., & Nurmanova, A.N. (2019). Examination of the preliminary gravity dressing influence on the Shalkiya deposit complex ore. Non-Ferrous Metals, 47(2), 3-8. https://doi.org/10.17580/nfm.2019.02.01
  12. Tsoy, B.V., Myrzakhmetov, S.S., Bekbotaeva, A.A., & Yusupov, Kh.A. (2022). New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits. Gornyi Zhurnal, 7, 27-31. https://doi.org/10.17580/gzh.2022.07.04
  13. Mambetaliyeva, A.R., Mamyrbayeva, K.K., Turysbekov, D.K., Dauletbakov, T.S., & Barmenshinova, M.B. (2022). Investigation of the process of sulfiding of gold-arsenic containing ores and concentrates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 51-56. https://doi.org/10.33271/nvngu/2022-3/051
  14. Tsoy, B., Myrzakhmetov, S., Yazikov, E., Bekbotayeva, A., & Bashilova, Y. (2021). Application of radio-wave geointoscopy method to study the nature of spreading the solutions in the process of uranium underground leaching. Mining of Mineral Deposits, 15(4), 1-7. https://doi.org/10.33271/mining15.04.001
  15. Yulusov, S., Surkova, T.Y., Kozlov, V.A., & Barmenshinova, M. (2018). Application of hydrolytic precipitation for separation of rare-earth and impurity. Journal of Chemical Technology and Metallurgy, 53(1), 27-30.
  16. Krupnik, L.A., Bitimbaev, M.Z., Shaposhnik, S.N., Shaposhnik, Y.N., & Demin, V.F. (2015). Validation of rational backfill technology for Sekisovskoe deposit. Journal of Mining Science, 51, 522-528. https://doi.org/10.1134/S1062739115030138
  17. Kostyuko, V.V., Makarov, A.B., Myakshev, V.S, & Ushkov, S.G. (1980). Geomekhanicheskiy analiz konstruktsii dnishcha dlya sistem s zakladkoy. Gornyy Zhurnal, 10, 44-46.
  18. Protopopov, I.I., Paliy, V.D., Piskarev, V.K., Afanasyev, & Yu.S. (1985). Prognoz geomekhanicheskikh protsessov i upravlenie gornym davleniem na shakhtakh. VNIMI, 84-93.
  19. Sevastyanov, B.N., Udalov, A.E., Bitimbaev, M.Zh., & Bekbaev, S.M. (1990). Upravlenie gornym davleniem pri vyemke tselikov. Upravlenie gornym davleniem i prognoz bezopasnykh usloviy osvoeniya ugolnykh mestorozhdeniy. VNIMI, 137-143.
  20. Xia, K., Chen, C., Liu, X., Zheng, X., Zhou, Y., Song, X., & Yuan, J. (2024). Ground collapse and caving mechanisms in strata overlying sublevel caving mines: a case study. Bulletin of Engineering Geology and the Environment, 83(1), 21. https://doi.org/10.1007/s10064-023-03529-1
  21. Dubei, O. (2022). Strategy of compatible use of jet and plunger pump with chrome parts in oil well. Energies, 15(1), 83. https://doi.org/10.3390/en15010083
  22. Velychkovych, A., Ropyak, L., Pashechko, M., & Pryhorovska, T. (2021). Influence of heavy weight drill pipe material and drill bit manufacturing errors on stress state of steel blades. Energies, 14(14), 4198. https://doi.org/10.3390/en14144198
  23. Cheng, G., Chen, C., Li, L., Zhu, W., Yang, T., Dai, F., & Ren, B. (2018). Numerical modelling of strata movement at footwall induced by underground mining. International Journal of Rock Mechanics and Mining Sciences, 108, 142-156. https://doi.org/10.1016/j.ijrmms.2018.06.013
  24. Xiao, Y., Shi, Q., Liu, K.-H., Li, Q.-W., & Wang, Z.-P. (2023). The evolution characteristics of fractures in overlying rock for underground coal fires. Bulletin of Engineering Geology and the Environment, 82, 290. https://doi.org/10.1007/s10064-023-03321-1
  25. Kim, J.G., Ali, M.A., & Yang, H.S. (2019). Robust design of pillar arrangement for safe room-and-pillar mining method. Geotechnical and Geological Engineering, 37, 1931-1942. https://doi.org/10.1007/s10706-018-0734-1
  26. Galvin, J.M. (2016). Pillar extraction. Ground Engineering – Principles and Practices for Underground Coal Mining, 309-358. https://doi.org/10.1007/978-3-319-25005-2_8
  27. Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rock mass assessment for man-made disaster risk management. New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 403-409. https://doi.org/10.1201/b19901-70
  28. Andrade, W.A.M., Bajaire, W.E.F., Jaramillo, V.F., & García, T.A.G. (2023). Effects of three types of attachments in the displacements, and distribution of stress and plastic deformation, and trough finite elements (FEM). APOS Trends in Orthodontics, 14(1), 48-56. https://doi.org/10.25259/APOS_19_2023
  29. Babanouri, N., Beyromvand, H., & Dehghani, H. (2023). Evaluation of different methods of pillar recovery in coal mining by numerical simulation: A case study. Environmental Earth Sciences, 82(4), 110. https://doi.org/10.1007/s12665-023-10801-w
  30. Chen, T., & Mitri, H.S. (2023). Unplanned ore dilution control in longhole mining using sill pillars – A case study. ISRM Congress, ISRM-15CONGRESS.
  31. Bekbergenov, D., Jangulova, G., Kassymkanova, K.K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
  32. Chen, T., & Mitri, H.S. (2021). Strategic sill pillar design for reduced hanging wall overbreak in longhole mining. International Journal of Mining Science and Technology, 31(5), 975-982. https://doi.org/10.1016/j.ijmst.2021.09.002
  33. Nizametdinov, N.F., Baryshnikov, V.D., Nizametdinov, R.F., Igemberlina, M.B., Staňková, H., & Batyrshaeva, Z.M. (2021). Analysis of ground surface displacements under the influence of repeated mining activities in the Zhezkazgan area. Journal of Mining Science, 57(2), 184-189. https://doi.org/10.1134/S1062739121020022
  34. Feng, G.R., Bai, J.W., Shi, X.D., Qi, T.Y., Wang, P.F., Guo, J., & Kang, L.X. (2021). Key pillar theory in the chain failure of residual coal pillars and its application prospect. Journal of China Coal Society, 46(1), 164-179. https://doi.org/10.13225/j.cnki.jccs.2020.0927
  35. Zharaspayev, A. (2019). Geomekhanicheskoe obosnovanie sposobov izvlecheniya tselikov na mestorozhdenii Zhaman-Aybat. PhD. Karaganda, Kazakhstan: Abylkas Saginov Karaganda Technical University.
  36. Ivadilinova, D.T., Issabek, T.K., Takhanov, D.K., & Yeskenova, G.B. (2023). Predicting underground mining impact on the earth’s surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 32-37. https://doi.org/10.33271/nvngu/2023-1/032
  37. Nurpeissova, M., Bekbassarov, S., Bek, A., Kyrgizbaeva, G., Turisbekov, S., & Ormanbekova, A. (2017). The geodetic monitoring of the engineering structures stability conditions. Journal of Engineering and Applied Sciences, 12(11), 9151-9163. https://doi.org/10.3923/jeasci.2017.9151.9163
  38. Nurpeissova, M., Bitimbayev, M.Zh., Rysbekov, K.В., Derbisov, K., Тurumbetov, Т., & Shults, R. (2020). Geodetic substantiation of the Saryarka copper ore region. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 194-202. https://doi.org/10.32014/2020.2518-170X.147
  39. Tripathy, D.P., & Ala, C.K. (2018). Identification of safety hazards in Indian underground coal mines. Journal of Sustainable Mining, 17(4), 175-183. https://doi.org/10.46873/2300-3960.1138
  40. Hussan, B., Takhanov, D., Kuzmin, S., & Abdibaitov, S. (2021). Research into influence of drilling-and-blasting operations on the stability of the Kusmuryn open-pit sides in the Republic of Kazakhstan. Mining of Mineral Deposits, 15(3), 130-136. https://doi.org/10.33271/mining15.03.130
  41. Rysbekov, K.B., Toktarov, A.A., & Kalybekov, T. (2021). Technique for justifying the amount of the redundant developed reserves considering the content of metal in the mining ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076
  42. Issatayeva, F.M., Rudko, G.I., & Portnov, V.S. (2019). Technical and economic substantiation of developing Kusmuryn copper deposit (Kazakhstan). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 19-24. https://doi.org/10.29202/nvngu/2019-6/3
  43. Hussan, B., Takhanov, D.K., Oralbay, A.O., & Kuzmin, S.L. (2021). Assessing the quality of drilling-and-blasting operations at the open pit limiting contour. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 42-48. https://doi.org/10.33271/nvngu/2021-6/042
  44. Shults, R., Soltabayeva, S., Seitkazina, G., Nukarbekova, Z., & Kucherenko, O. (2020). Geospatial monitoring and structural mechanics models: A case study of sports structures. Environmental Engineering. International Conference on Environmental Engineering, 11, 1-9. https://doi.org/10.3846/enviro.2020.685
  45. Zhanibekov, B., Kamalovich, M., Toshmukhamdov, B., Abdunabieva, M., & Abdusamatova, D. (2024). Geodynamic issues of ore deposits in Central Asia. E3S Web of Conferences, 497, 02032. https://doi.org/10.1051/e3sconf/202449702032
  46. Fan, S., Chen, Y., Wang, L., Liu, X., & Chen, J. (2023). Application of seismic channel wave technology on small structure exploration in coal mine. International Journal of Energy, 3(3), 14-18. https://doi.org/10.54097/ije.v3i3.004
  47. Kozhogulov, K.C., Takhanov, D.K., Kozhas, A.K., Imashev, A.Z., & Balpanova, M.Z. (2020). Methods of forward calculation of ground subsidence above mines. Journal of Mining Science, 56, 184-195. https://doi.org/10.1134/S1062739120026637
  48. Nemova, N.A., Tahanov, D., Hussan, B., & Zhumabekova, A. (2020). Technological solutions development for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 17-23. https://doi.org/10.33271/nvngu/2020-2/017
  49. Opredelenie granits zon obrusheniy nalegayushchey tolshchi nad pogashennymi panelyami rudnika Zhomart. (2021). Otchet NIR. Almaty, Kazakhstan: TOO “Kazgipro-tsvetmet:, 72 s.
  50. Imashev, A., Suimbayeva, A., Zholmagambetov, N., Takhanov, D., & Abdimutalip, N. (2018). Research of possible zones of inelastic deformation of rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2, 177-184.
  51. Takhanov, D., Balpanova, M., Kenetayeva, A., Rabatuly, M., Zholdybayeva, G., & Usupayev, S. (2023) Risk assessments for rockfalls taking into account the structure of the rock mass. E3S Web of Conferences, 443, 04012. https://doi.org/10.1051/e3sconf/202344304012
  52. Baibatsha, A.B., Bekbotayev, A.T., & Bekbotayeva, A.A. (2013). Ore-bearing strata lithology of the Zhezkazgan copper sandstones deposit. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 1, 135-140. https://doi.org/10.5593/SGEM2013/BA1.V1/S01.019
  53. Zhienbayev, A., Balpanova, M., Asanova, Zh., Zharaspaev, M., Nurkasyn, R., & Zhakupov, B. (2023). Analysis of the roof span stability in terms of room-and-pillar system of ore deposit mining. Mining of Mineral Deposits, 17(1), 129-137. https://doi.org/10.33271/mining17.01.129
  54. Alekseev, A.D., & Nedodaev, N.V. (1982). Predelnoe sostoyanie gornykh porod. Kyiv, Ukraina: Naukova Dumka, 200 s.
  55. Nikonow, W., & Rammlmair, D. (2022). The fate of molybdenum in the residues of a Chilean copper ore processing plant. Minerals Engineering, 183, 107606. https://doi.org/10.1016/j.mineng.2022.107606
  56. Hoek, E., & Diederichs, M.S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  57. Hoek, E., Carter, T.G., & Diederichs, M.S. (2013, June). Quantification of the geological strength index chart. ARMA US Rock Mechanics/Geomechanics Symposium. ARMA-2013.
  58. Gong, Y., Zha, J., Guo, Q., & Guo, G. (2024). A new indicator for estimating the degree of mining-induced land subsidence: The overburden’s average GSI value. Scientific Reports, 14(1), 332. https://doi.org/10.1038/s41598-023-51146-5
  59. Orynbasarova, E.O. (2019) Sovershenstvovanie metodiki kompleksnoy pod-gotovki i ispolzovaniya kosmicheskikh snimkov v zadachakh otsenki oseda-niya promyshlennoy poverkhnosti v usloviyakh ekspluatatsiy Tengizskogo mestorozhdeniya. PhD. Almaty, Kazakhstan: Satbaev University.
  60. Vremennaya instruktsiya po raschetu tselikov dlya pologopadayushchikh zalezhey na glubinakh bolee 400 m i naklonnykh zalezhey Zhezkazganskogo mestorozhdeniya. (1998). Almaty-Zhezkazgan, Kazakhstan: IGD im. D.A. Kunaeva
  61. Лицензия Creative Commons