Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Assessing stability of mine workings driven in stratified rock mass

Askar Imashev1, Aigerim Suimbayeva1, Gaukhar Zhunusbekova1, Amoussou Coffi Adoko2, Bekzhan Issakov1

1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

2Nazarbayev University, Astana, Kazakhstan


Min. miner. depos. 2024, 18(1):82-88


https://doi.org/10.33271/mining18.01.082

Full text (PDF)


      ABSTRACT

      Purpose.The research purpose is to assess the stability of mine workings driven in a stratified rock mass by studying the influence of the stratified rock bedding angle on the rock mass stress-strain state (SSS).

      Methods. The research uses both experimental and numerical methods. Experimental studies are carried out using rock samples with different angles of rock layer occurrence, while numerical modeling is performed using the RS2 (Geotechnical Finite Element Analysis) software based on the generalized Hoek-Brown failure criterion. The studies are carried out on models covering the border area of the mine workings driven in the mass with the angles of rock occurrence from 0 to 75°.

      Findings. Experimental and numerical studies have shown that when the rock layer inclination angle changes, significant changes occur in the stress concentration zones around the mine workings. An increased rock layer inclination angle is accompanied by a change in stress distribution, which is important for assessing the stability of mine workings. A particularly strong influence is observed at the angles of rock occurrence 30° and above.

      Originality. The research novelty is in revealing the patterns in the stress distribution in the stratified rock masses depen-ding on the rock layer inclination angle. Research results provide new data on the rock interaction mechanisms in difficult geological conditions.

      Practical implications. The results obtained can be used in the planning and operation of mine workings in difficult geological conditions. By taking into account the changes in stress zones caused by the rock layer inclination angle, it is possible to improve the safety and efficiency of mining operations.

      Keywords: mine workings, stratified mass, rocks, stability, stresses, numerical modeling


      REFERENCES

  1. Atakhanova, Z., & Azhibay, S. (2023). Assessing economic sustainability of mining in Kazakhstan. Mineral Economics, 36(4), 719-731. https://doi.org/10.1007/s13563-023-00387-x
  2. Yerimpasheva, A.T., Myrzakhmetova, A.M., & Alshimbayeva, D.U. (2022). Conjugation of the Eurasian economic union and the belt road initiative: the role and place of Kazakhstan. R-Economy, 8(2), 172-186. https://doi.org/10.15826/recon.2022.8.2.014
  3. Kenzhaliyev, O.B., Ilmaliyev, Z.B., Kassymova, G.K., Triyono, B.M., Minghat, A.D., & Arpentieva, M.R. (2020). Commercialization of research and development results as the economy growth factor of the Republic of Kazakhstan. International Journal of Advanced Science and Technology, 29(7), 18-28.
  4. Ratov, B.T., Fedorov, B.V., Syzdykov, A.K., Zakenov, S.T., & Sudakov, A.K. (2021). The main directions of modernization of rock-destroying tools for drilling solid mineral resources. International Multidisciplinary Scientific GeoConference: SGEM, 21(1.1), 335-346. https://doi.org/10.5593/sgem2021/1.1/s03.062
  5. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, 1, 41-45. https://doi.org/10.17580/em.2022.01.08
  6. Tursunova, A., Medeu, A., Alimkulov, S., Saparova, A., & Baspakova, G. (2022). Water resources of Kazakhstan in conditions of uncertainty. Journal of Water and Land Development, 54, 138-149. https://doi.org/10.24425/jwld.2022.141565
  7. Kudryavtsev, S.S., Yemelin, P.V., & Yemelina, N.K. (2018). The development of a risk management system in the field of industrial safety in the Republic of Kazakhstan. Safety and Health at Work, 9(1), 30-41. https://doi.org/10.1016/j.shaw.2017.06.003
  8. Khromykh, S.V., Semenova, D.V., Kotler, P.D., Gurova, A.V., Mikheev, E.I., & Perfilova, A.A. (2020). Orogenic volcanism in Eastern Kazakhstan: Composition, age, and geodynamic position. Geotectonics, 54, 510-528. https://doi.org/10.1134/S0016852120040044
  9. Oliinyk, T., Yefimenko, S., Abdrakhmanova, Z., Kan, A., & Issatayeva, F. (2020). Online ore monitoring using EDXRF method on process conveyor belts at Kazakhmys Corporation LLC operations. E3S Web of Conferences, 166, 02010. https://doi.org/10.1051/e3sconf/202016602010
  10. Abdullayeva, A., Kalabayeva, A., Ivanov, A., Abdullayev, S., & Bakyt, G. (2022). Methods for identification of complex industrial control objects on their accelerating characteristics. Communications, 24(3), 239-246. https://doi.org/10.26552/com.C.2022.3.B239-B246
  11. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, 123, 01010. https://doi.org/10.1051/e3sconf/201912301010
  12. Do, N.A., Dias, D., Tran, T.T., Dao, V.D., & Nguyen, P.N. (2019). Behavior of noncircular tunnels excavated in stratified rock masses – Case of underground coal mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(1), 99-110. https://doi.org/10.1016/j.jrmge.2018.05.005
  13. Shi, X., Yang, X., Meng, Y., & Li, G. (2016). An anisotropic strength model for layered rocks considering planes of weakness. Rock Mechanics and Rock Engineering, 49, 3783-3792. https://doi.org/10.1007/s00603-016-0985-1
  14. Tazhibaev, D.K., & Tazhibaev, K.T. (2014). Vliyanie anizotropnosti gornykh porod na ustoychivost obnazheniy gornykh vyrabotok. Moskva, Rossiya: Izdatelskiy tsentr “Teknik”, 124 s.
  15. Tsoy, P.A., Usoltseva, O.M., & Semenov, V.N. (2018). Opredelenie mnozhestvennykh regressionnykh zavisimostey predela prochnosti na szhatie i modulya deformatsii slantsevykh porod ot velichiny bokovogo davleniya i ugla naplastovaniya. Interekspo Geo-Sibir, 6, 247-256.
  16. Karev, V.I., Klimov, D.M., Kovalenko, Yu.F., & Ustinov, K.B. (2016). Model razrusheniya anizotropnykh gornykh porod pri slozhnom nagruzhenii. Fizicheskaya Mezomekhanika, 19(6), 34-40.
  17. Zhao, D., Xia, Y., Zhang, C., Liu, N., Tang, C.A., Singh, H.K., & Wang, P. (2023). A new method to investigate the size effect and anisotropy of mechanical properties of columnar jointed rock mass. Rock Mechanics and Rock Engineering, 56(4), 2829-2859. https://doi.org/10.1007/s00603-022-03200-3
  18. Moldagozhina, M.K., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454-10457.
  19. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, 60, 00014. https://doi.org/10.1051/e3sconf/20186000014
  20. Tian, M., Han, L., Yang, X., Feng, Q., Meng, Q., Xie, Y., & Ma, C. (2022). Asymmetric deformation failure mechanism and support technology of roadways under non-uniform pressure from a mining disturbance. Bulletin of Engineering Geology and the Environment, 81(5), 211. https://doi.org/10.1007/s10064-022-02710-2
  21. Hu, S., Tan, Y., Zhou, H., Ru, W., Ning, J., Wang, J., & Li, Z. (2020). Anisotropic modeling of layered rocks incorporating planes of weakness and volumetric stress. Energy Science & Engineering, 8(3), 789-803. https://doi.org/10.1002/ese3.551
  22. Zhang, L., Niu, F., Liu, M., Ju, X., Wang, Z., Wang, J., & Dong, T. (2022). Fracture characteristics and anisotropic strength criterion of bedded sandstone. Frontiers in Earth Science, 10, 879332. https://doi.org/10.3389/feart.2022.879332
  23. Zhunusbekova G., Suimbayeva A., Imashev А., Kazakov A., & Asan S. (2022). Analyzing strength criteria for assessing mine working stability. Trudy Universytetaа, 3, 159-165. https://doi.org/10.52209/1609-1825_2022_3_159
  24. Duveau, G., & Shao, J. F. (1998). A modified single plane of weakness theory for the failure of highly stratified rocks. International Journal of Rock Mechanics and Mining Sciences, 35(6), 807-813. https://doi.org/10.1016/S0148-9062(98)00013-8
  25. Donzé, F.V., & Scholtès, L. (2017). Predicting the strength of anisotropic shale rock: Empirical nonlinear failure criterion vs. discrete element method model. ALERT Doctoral School 2017: Discrete Element Modeling, 167-180.
  26. Liu, Q., Hu, Q., Zhang, F., Ding, Z., & Bao, W. (2022). Application of the slope coefficient of the equivalent m-c criterion in layered rock mass engineering. Advances in Civil Engineering, 2022, 2913942. https://doi.org/10.1155/2022/2913942
  27. Wang, J., Wu, S., Cheng, H., Sun, J., Wang, X., & Shen, Y. (2024). A generalized nonlinear three-dimensional Hoek-Brown failure criterion. Journal of Rock Mechanics and Geotechnical Engineering. In Press, Journal Pre-proof. https://doi.org/10.1016/j.jrmge.2023.10.022
  28. Li, G.X., Wang, H.L., Peng, J., Wang, L.F., & Dai, B.B. (2024). Strength model of anisotropic rocks based on Hoek-Brown criterion. Rock and Soil Mechanics, 44(12), 5. https://doi.org/10.16285/j.rsm.2023.5538
  29. Nurpeisova, M., Bekbassarov, Z., Kenesbayeva, A., Kartbayeva, K., & Gabitova, U. (2020). Complex evaluation of geodynamic safety in the development of hydrocarbon reserves deposits. News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences, 1, 90-98. https://doi.org/10.32014/2020.2518-170X.11
  30. Hoek, E., & Brown, E.T. (2019). The Hoek-Brown failure criterion and GSI-2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001
  31. Zhang, J., Zhang, L., Wang, W., Zhang, D., & Zhang, B. (2020). Probabilistic analysis of three‐dimensional tunnel face stability in soft rock masses using Hoek-Brown failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics, 44(11), 1601-1616. https://doi.org/10.1002/nag.3085
  32. Sonmez, H., & Ulusay, R. (1999). Modifications to the geological strength index (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Sciences, 36(6), 743-760. https://doi.org/10.1016/S0148-9062(99)00043-1
  33. Hussian, S., Mohammad, N., Ur Rehman, Z., Khan, N.M., Shahzada, K., Ali, S., & Sherin, S. (2020). Review of the geological strength index (GSI) as an empirical classification and rock mass property estimation tool: origination, modifications, applications, and limitations. Advances in Civil Engineering, 2020, 1-18. https://doi.org/10.1155/2020/6471837
  34. Bertuzzi, R., Douglas, K., & Mostyn, G. (2016). Comparison of quantified and chart GSI for four rock masses. Engineering Geology, 202, 24-35. https://doi.org/10.1016/j.enggeo.2016.01.002
  35. Лицензия Creative Commons