Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations

Volodymyr Bondarenko1, Iryna Kovalevska1, Viacheslav Krasnyk2, Volodymyr Chernyak1, Oleksandr Haidai1, Roman Sachko3, Ivan Vivcharenko4

1Dnipro University of Technology, Dnipro, Ukraine

2SE “STC “Vuhleinnovatsiia”, Kyiv, Ukraine

3PJSC “MM “Pokrovske”, Pokrovsk, Ukraine

4LLC “DTEK Energy”, Kyiv, Ukraine


Min. miner. depos. 2024, 18(1):67-81


https://doi.org/10.33271/mining18.01.067

Full text (PDF)


      ABSTRACT

      Purpose.The research aims to substantiate the general provisions on coordination of the experimental-analytical research results of the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations (using the example of the mining-geological conditions of the phenomena at the PJSC Mine Administration Pokrovske, Ukraine).

      Methods. The research uses an integrated methodology consisting of indirect experimental methods for studying the adjacent rock mass state and tendencies.

      Findings. It has been proven that indirect experimental indicators of the rock mass state around the tunneling face are related to the peculiarities of the distribution of its stress-strain state components. Based on this research, the well lengths of up to 10-15 m has been determined to effectively and safely de-stress the rock mass. The experimental research validity is confirmed by conducted computational experiments, in the course of which the dependence of the propagation parameters of the stress-strain state component concentrations on the degree of hardness of the lithotypes is revealed, and a geomechanical substantiation to the tendencies of propagation of rock pressure anomalies near stoping and tunneling faces is given. The new knowledge obtained is the basis for creating a method for calculating rational parameters for the location of de-stressing pre-drilled wells.

      Originality. An objective assessment of the degree of adequacy and reliability of the computational experiment results has been made under the condition of using a new geomechanical model with mine studies of seismic-acoustic signal parameters and the initial gas release velocity. The main tendencies of vertical σу, horizontal σх and σz, as well as stress intensity propagation have been identified. The obtained results of exploring the bottom-hole mass are aimed at substantiating the parameters of anti-outburst measures for all preparatory mine workings.

      Practical implications. The conducted research is implemented in creation of a calculation method and recommendations for the selection of rational parameters for the location of de-stressing pre-drilled wells for the purpose of weakening the rock mass, surrounding the tunneling face, and reducing the probability of gas-dynamic phenomena occurrence due to the controlled weakening of adjacent rocks.

      Keywords: mine, gas-dynamic phenomena, pre-drilled wells, stress-strain state, field and in-seam working


      REFERENCES

  1. Sobolev, V.V., Chernay, A.V., Zberovskiy, V.V., Polyashov, A.S., & Fillipov, A.O. (2014). Fizicheskaya mekhanika vybrosoopasnykh ugley. Zaporizhzhia, Ukraina: Pryvoz Prynt, 304 s.
  2. Black, D.J. (2019). Review of coal and gas outburst in Australian underground coal mines. International Journal of Mining Science and Technology, 29(6), 815-824. https://doi.org/10.1016/j.ijmst.2019.01.007
  3. Keneti, A., & Sainsbury, B.A. (2018). Review of published rockburst events and their contributing factors. Engineering Geology, 246, 361-373. https://doi.org/10.1016/j.enggeo.2018.10.005
  4. Ptáček, J. (2017). Rockburst in Ostrava-Karvina coalfield. Procedia Engineering, 191, 1144-1151. https://doi.org/10.1016/j.proeng.2017.05.289
  5. Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1-16. https://doi.org/10.33271/mining17.01.001
  6. Simser, B.P. (2019). Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1036-1043. https://doi.org/10.1016/j.jrmge.2019.07.005
  7. Fernandez-Diaz, J.J., Gonzalez-Nicieza, C., Alvarez-Fernandez, M.I., & Lopez-Gayarre, F. (2013). Analysis of gas-dynamic phenomenon in underground coal mines in the central basin of Asturias (Spain). Engineering Failure Analysis, 34, 464-477. https://doi.org/10.1016/j.engfailanal.2013.07.027
  8. Wasilewski, S. (2020). Gas-dynamic phenomena caused by rock mass tremors and rock bursts. International Journal of Mining Science and Technology, 30(3), 413-420. https://doi.org/10.1016/j.ijmst.2020.03.012
  9. Dubinski, J., Stec, K., & Bukowska, M. (2019). Geomechanical and tectonophysical conditions of mining-induced seismicity in the Upper Silesian Coal Basin in Poland: A case study. Archives of Mining Sciences, 64(1), 163-180. https://doi.org/10.24425/ams.2019.126278
  10. Zhulay, Y., Zberovskiy, V., Angelovskiy, A., & Chugunkov, I. (2012). Hydrodynamic cavitation in energy-saving technological processes of mining sector. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 61-65. https://doi.org/10.1201/b13157-11
  11. Ahaiev, R., Prytula, D., Kliuiev, E., Cabana, E., & Kabakova, L. (2020). The determination of the influence degree of mining-geological and mining-technical factors on the safety of the degassing system. E3S Web of Conferences, 168, 00040 https://doi.org/10.1051/e3sconf/202016800040
  12. Bоndаrenkо, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 21-28. https://doi.org/10.29202/nvngu/2018-2/4
  13. Kovalevska, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 159-163. https://doi.org/10.1201/b16354-27
  14. Griadushchiy, Y., Korz, P., Koval, O., Bondarenko, V., & Dychkovskiy, R. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 2-7. https://doi.org/10.1201/noe0415436700.ch1
  15. Zhang, W., Ma, N., Ma, J., Li, C., & Ren, J. (2020). Mechanism of rock burst revealed by numerical simulation and energy calculation. Shock and Vibration, 1-15. https://doi.org/10.1155/2020/8862849
  16. Ratov, B.T., Fedorov, B.V., Syzdykov, A.Kh., Zakenov, S.T., & Sudakov, A.K. (2021). The main directions of modernization of rock-destroying tools for drilling solid mineral resources. 21st International Multidisciplinary Scientific GeoConference SGEM 2021. Section Exploration & Mining, 503-514. https://doi.org/10.5593/sgem2021/l.l/s03.062
  17. Zhang, W., Mu, C., Xu, D., & Li, Z. (2021). Energy action mechanism of coal and gas outburst induced by rockburst. Shock and Vibration, 1-14. https://doi.org/10.1155/2021/5553914
  18. Bondarenko, V., Salieiev, І., Symanovych, H., Kovalevska І., & Shyshov, M. (2023). Substantiating the patterns of geomechanical factors influence on the shear parameters of the coal-overlaying formation requiring degassing at high advance rates of stoping faces in the Western Donbas. Inżynieria Mineralna, 1(51), 23-32. https://doi.org/10.29227/IM-2023-01-03
  19. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https://doi.org/10.15407/mining11.02.001
  20. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2013). Mining of mineral deposits. London, United Kingdom: CRC Press, Taylor & Francis Group, 372 p. https://doi.org/ 10.1201/b16354
  21. Simanovich, G., Serdiuk, V., Fomichov, I.A., & Bondarenko, V. (2007). Research of rock stresses and deformations around mining workings. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, 47-56. https://doi.org/10.1201/noe0415436700.ch6
  22. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group, Book. 238 p. https://doi.org/10.1201/b13157
  23. Saranchuk, V.I., Ayruni, A.T., & Kovalyov, K.Ye. (1988). Nadmolekulyarnaya organizatsiya, struktura i svoystva uglya. Kyiv, Ukraina: Naukova dumka, 190 s.
  24. Alekseev, A.D., & Surgay, N.S. (1994). Prognoz i upravlenie sostoyaniem gornogo massiva. Kyiv, Ukraina: Naukova dumka, 200 s.
  25. Mineev, S.P., Prusova, A.A., & Kornilov, M.G. (2007). Aktivatsiya desorbtsii metana v ugol’nykh plastakh. Dnipropetrovsk, Ukraina: Veber, 252 s.
  26. Voloshin, N.Ye. (1985). Vnezapnye vybrosy i sposoby bor’by s nimi v ugol’nykh shakhtakh. Kyiv, Ukraina: Tekhnika, 127 s.
  27. Nikolin, V.I., Lysikov, B.A., & Tkach, V.Ya. (1972). Prognoz vybrosoopasnosti ugol’nykh plastov. Donetsk, Ukraina: Donbas, 126 s.
  28. Stepanovich, G.Ya., Nikolin, V.I., & Lysikov, B.A. (1970). Gazodinamicheskie yavleniya pri podgotovke glubokikh gorizontov. Donetsk, Ukraina: Donbas, 110 s.
  29. Nikolin, V.I., Lysikov, B.A., & Yarembash, I.F. (1968). Vybrosoopasnye porody bol’shikh glubin. Donetsk, Ukraina: Donbas, 80 s.
  30. Zborshchik, M.I., Osokin, V.V., & Sokolov, N.M. (1984). Predotvrashchenie gazodinamicheskikh yavleniy v ugol’nykh shakhtakh. Kyiv, Ukraina: Tekhnika, 148 s.
  31. Kolesov, O.A., Nikolin, V.I., Stepanovich, G.Ya., & Tkach, V.Ya. (1971). Regional’nyy prognoz vybrosoopasnosti ugol’nykh plastov Donetskogo basseyna. Ugol’ Ukrainy, 5, 42-44.
  32. Zorin, A.N., Dolinina, N.N., & Kolesnikov, V.G. (1981). Mekhanika upravleniya geterogennym uprugo-nasledstvennym gornym massivom. Kyiv, Ukraina: Naukova dumka, 284 s.
  33. Zabigaylo, V.Ye., & Nikolin, V.I. (1990). Vliyanie katageneza gornykh porod i metamorfizma ugley na ikh vybrosoopasnost’. Kyiv, Ukraina: Naukova dumka, 168 s.
  34. Ol’khovichenko, A.Ye., & Sirota, O.Ts. (1969). K voprosu vliyaniya ostatochnykh tektonicheskikh napryazheniy na vozniknovenie vnezapnykh vybrosov uglya i gaza. Voprosy Inzhenernoy Geologii pri Proektirovanii Stroitel’stva i Ekspluatatsii Podzemnykh Sooruzheniy, 1, 64-68.
  35. Ahaiev, R., Prytula, D., Kliuiev, E., Cabana, E.,& Kabakova, L. (2020). The determination of the influence degree of mining-geological and mining-technical factors on the safety of the degassing system. E3S Web of Conferences, 168, 00040. https://doi.org/10.1051/e3sconf/202016800040
  36. NPAOP 10.0-1.01-10. (2015). Pravyla bezpeky u vuhilnykh shakhtakh. Kharkiv, Ukraina: Fort, 248 s.
  37. SOU-P 10.1.00174088.011:2005. (2005). Pravyla vedennia hirnychykh robit na plastakh, skhylnykh do hazodynamichnykh iavyshch. Kyiv, Ukraina: Minvuhleprom Ukrainy.
  38. SOU-P 05.1.00174088.033:2012. (2013). Prognoz i predotvrashchenie vybrosov peschanikov na glubokikh shakhtakh. Kyiv, Ukraina: Minenerhovuhillia Ukrainy.
  39. SOU-P 10.1.00174088.017:2009. (2009). Pravila peresecheniya gornymi vyrabotkami zon geologicheskikh narusheniy na plastakh, sklonnykh k vnezapnym vybrosam uglya i gaza. Kyiv, Ukraina: Minvuhleprom Ukrainy.
  40. SOU-P 10.1.00174088.029:2011. (2011). Pravila otneseniya ugol’nykh plastov k kategoriyam vybrosoopasnosti. Kyiv, Ukraina: Minenerhovuhillia Ukrainy.
  41. SOU-P 10.1.00174088.031:2011. (2011). Kontrol’ za provedeniem meropriyatiy i tekhnologicheskikh protsessov po parametram akusticheskogo signala pri raskrytii sklonnykh k GDYa ugol’nykh plastov. Kyiv, Ukraina: Minenerhovuhillia Ukrainy.
  42. Minieiev, S., Vasyliev, L., Trokhymets, M., Maltseva, V., Vialushkin, Y., & Moskalova, T. (2022). Heading set of equipment for underground development galleries drivage in rocks prone to gas-dynamic phenomena. IOP Conference Series: Earth and Environmental Science, 970(1), 012044. https://doi.org/10.1088/1755-1315/970/1/012044
  43. Mineev, S.P., Rubinskiy, A.A., Vitushko, O.V., & Radchenko, A.V. (2010). Gornye raboty v slozhnykh usloviyakh na vybrosoopasnykh ugol’nykh plastakh. Donetsk, Ukraina: Skhidnyi vydavnychyi dim, 604 s.
  44. Koptikov, V.P., Bokiy, B.V., Mineev, S.P., Yuzhanin, I.A., & Nikiforov, A.V. (2016). Sovershenstvovanie sposobov i sredstv bezopasnoy razrabotki ugol’nykh plastov, sklonnykh k gazodinamicheskim yavleniyam. Donetsk, Ukraina: Promin, 480 s.
  45. Mineev, S.P., & Rubinskiy, A.A. (2007). Provedenie vyrabotok prokhodcheskimi kombaynami po vybrosoopasnym ugol’nym plastam i porodam. Dnipropetrovsk, Ukraina: Dnipro, 384 s.
  46. Mineev, S.P., Il’yushenko, A.V., & Vostretsov, N.A. (2018). Vskrytie vybrosoopasnykh ugol’nykh plastov prokhodcheskimi kombaynami. Dnipro-Kyiv, Ukraina: Khalikov R.Kh., 136 s.
  47. Mineev, S., Filatieva, E., Oleinichenko, A., & Toderas, M. (2021). On the relationship between gas emission from undermined coal-bearing stratum and the intensity of coal seam mining. E3S Web of Conferences, 280, 08017. https://doi.org/10.1051/e3sconf/202128008017
  48. Mineev, S.P., Prusova, A.A, & Kornilov, M.G. (2007). Aktivatsiya desorbtsii metana v ugol’nykh plastakh. Dnipropetrovsk, Ukraina: Veber, 252 s.
  49. Zhou, A., Hu, J., Wang, K., & Du, C. (2023). Analysis of fault orientation and gas migration characteristics in front of coal mining face: Implications for coal-gas outbursts. Process Safety and Environmental Protection, 177, 232-245. https://doi.org/10.1016/j.psep.2023.07.011
  50. Mineev, S.P., Potapenko, A.A. Mkhatvari, T.Ya., Nikiforov, A.V., Kuzyara, S.V., & Timofeev, E.I. (2013). Povyshenie effektivnosti gidrorykhleniya vybrosoopasnykh ugol’nykh plastov. Donetsk, Ukraina: Skhidnyi vydavnychyi dim, 216 s.
  51. Minieiev, S.P., & Kostrytsia, O.O. (2021). Issues of adjustment of normative documents on safe carrying out of workings by the tunneling combine on outburst-hazardous sandstone or near it at mines of Ukraine. Journal of Dоnеtsk National Technical University, 1(6)-2(7), 111-122. https://doi.org/10.31474/2415-7902-2021-1(6)-2(7)-111-122
  52. Trokhymets, M.Ya., Maltseva, V.Ye., & Vialushkin, Ye.O. (2020). Sposib provedennia pidhotovchoi vyrobky po hazonosnomu vykydonebezpechnomu vuhilnomu plastu prokhidnytskym kombainom. Patent No. 122179, Ukraina.
  53. Minieiev, S.P., Iliushchenko, A.V., & Vostretsov, M.O. (2020). Sposib provedennia vyrobok kombainom u vykydonebezpechnykh plastakh vuhillia ta hirskykh porid. Patent No. 140378, Ukraina.
  54. Bulat, A.F., Mineev, S.P., & Prusova, A.A. (2016). Generating methane adsorption under relaxation of molecular structure of coal. Journal of Mining Science, 52, 70-77. https://doi.org/10.1134/S1062739116010149
  55. Baysarov, L.V., Il’yashov, M.A., & Demchenko, A.I. (2005). Geomekhanika i tekhnologiya podderzhaniya povtorno ispol’zuemykh gornykh vyrabotok. Dnipropetrovsk, Ukraina: Lira LTD, 240 s.
  56. Klymenko, D.V. (2018). Zakonomirnosti proiaviv i seismoakustychnyi prohnoz hazodynamichnykh iavyshch pry vidpratsiuvanni vuhilnykh plastiv. PhD Thesis. Dnipro, Ukraina: NTU “DP”.
  57. NPAOP 10.0-5.28-87. (1987). Instruktsiya po prognozu i podderzhaniyu vnezapnykh proryvov metana iz pochvy gornykh vyrabotok. Kyiv, Ukraina: Minvuhleprom URSR.
  58. Agafonov, A.V. (1998). Sposoby i sredstva obespecheniya bezopasnosti provedeniya podgotovitel’nykh vyrabotok po vybrosoopasnym plastam. Donetsk, Ukraina: Donbas, 235 s.
  59. Yanzhula, O.S. (2020). Obhruntuvannia parametriv vedennia ochysnykh robit poblyzu heolohichnykh porushen, skhylnykh do raptovykh vydilen metanu. PhD Thesis. Dnipro, Ukraina: IHTM NAN Ukrainy.
  60. Poturaev, V.N., Zorin, A.N., & Zabigaylo, V.N. (1986). Prognoz i predotvrashchenie vybrosov porod i gaza. Kyiv, Ukraina: Naukova dumka, 160 s.
  61. Vasilkovskyi, V., Minieiev, S., & Kaluhina, N. (2019). Bonding energy and methane amount at the open surface of metamorphic coal. E3S Web of Conferences, 109, 00108. https://doi.org/10.1051/e3sconf/201910900108
  62. Baranov, V.A. (2000). Strukturnye preobrazovaniya peschanikov Donbassa i prognoz ikh vybrosoopasnosti. PhD Thesis. Dnipropetrovsk, Ukraina: IHTM NAN Ukrainy.
  63. Bezruchko, K.A. (2015). Opyt primeneniya metoda lokal’nogo prognoza vybrosoopasnosti peschanikov na shakhtakh Donbassa. Ugol’ Ukrainy, 12, 42-44.
  64. Zorin, A.N., Kolesnikov, V.G., Mineev, S.P., Prusova, A.A., & Kovtun, Ye.D. (1986). Upravlenie sostoyaniem gornogo massiva. Kyiv, Ukraina: Naukova dumka, 212 s.
  65. Korol’, V.I., & Skobenko, A.V. (2013). Akusticheskiy sposob prognoza gazodinamicheskikh yavleniy v ugol’nykh shakhtakh. Dnipropetrovsk, Ukraina: NHU, 182 s.
  66. Rukovodstvo po primeneniyu na shakhtakh Donbassa akusticheskikh sposobov kontrolya sostoyaniya prizaboynoy chasti vybrosoopasnogo plasta. (1996). Makiivka, Ukraina: MakNDI.
  67. Bondarenko V., Kovalevska, I. Symanovych, G., Sotskov, V., & Barabash, M. (2018). Geomechanics of interference between the operation modes of mine working support elements at their loading. Mining Science, 25, 219-235. https://doi.org/10.5277/msc182515
  68. Vinogradov, V.V. (1989). Geomekhanika upravleniya sostoyaniem massiva vblizi gornykh vyrabotok. Kyiv, Ukraina: Naukova dumka, 192 s.
  69. Bondarenko, V., Kovalevska, I., Husiev, O., Snihur, V., & Salieiev, I. (2019). Concept of workings reuse with application of resource-saving bolting systems. E3S Web of Conferences, 133, 02001. https://doi.org/10.1051/e3sconf/201913302001
  70. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, Book. 523 p. https://doi.org/10.1201/b17547
  71. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 26-32.
  72. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  73. Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into impact of leaving waste rocks in the mined-out space on the geomechanical state of the rock mass surrounding the longwall face. Energies, 15(24), 9522. https://doi.org/10.3390/en15249522
  74. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, 66, 03001. https://doi.org/10.1051/e3sconf/20186603001
  75. Kovalevs’ka, I., Fomychov, V., Illiashov, M., & Chervatuk, V. (2012). The formation of the finite-element model of the system “undermined massif-support of stope”. Geomechanical Processes During Underground Mining, 73-80. https://doi.org/10.1201/b13157-13
  76. Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, 5, 14-17.
  77. Bondarenko, V.I., Samusya, V.I., & Smolanov, S.N. (2005). Mobile lifting units for wrecking works in pit shafts. Gornyi Zhurnal, 5, 99-100.
  78. Prykhodko, V., Ulanova, N., Haidai, O., & Klymenko, D. (2018). Mathematical modeling of tight roof periodical falling. E3S Web of Conferences, 60, 00020. https://doi.org/10.1051/e3sconf/20186000020
  79. Chudyk, І.І., Femiak, Ya.M., Orynchak, М.І., Sudakov, A.K., & Riznychuk, А.І. (2021). New methods of preventing crumbling and collapse of the borehole walls. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 17-22. https://doi.org/10.33271/nvngu/2021-4/017
  80. Maksymovych, O., Solyar, T., Sudakov, A., Nazar, I., & Polishchuk, M. (2021). Determination of stress concentration near the holes under dynamic loadings. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 19-24. https://doi.org/10.33271/nvngu/20213/019
  81. Лицензия Creative Commons