Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development

Ildar Salieiev1

1LLC “DTEK Energy”, Kyiv, Ukraine


Min. miner. depos. 2024, 18(1):54-66


https://doi.org/10.33271/mining18.01.054

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to form the principles and procedures for developing an organizational concept of complex mining of minerals from coal mines using the example of a promising model of transition of the PJSC “DTEK Pavlohradvuhillia” mines to multi-product production of clean drinking water, utilization of methane, secondary coal from rock dumps and slurry reservoirs, low-grade thermal energy of mine groundwater and associated raw materials from desalination waste.

      Methods. The instrumental basis of the research is the methodology of the process approach to organizing multi-product activities of an enterprise. In addition, an integrated approach is used, including an analysis of existing experience and available complex coal mining and processing technologies.

      Findings. The paper presents the research results of the prerequisites for the development of innovative technological solutions related to the integrated use of mineral raw materials formed in the process of coal mining and processing. It has been revealed that at the present stage the technological, environmental and economic aspects of such innovations have been sufficiently developed, while the organizational issues regarding the balanced interaction of multi-product production units have poorly been studied. The necessity has been substantiated, as well as the content and sequence of actions have been determined for the development of an organizational concept of complex mining and processing of mineral raw materials in the conditions of PJSC “DTEK Pavlohradvuhillia”.

      Originality. The principles and procedures for developing an organizational concept of a multi-product enterprise, formed in the research process, provide further development of a methodological basis for searching and substantiating innovative solutions for complex mining of mineral resources from coal mines. They can be used to assess the efficiency and identify weaknesses in current processes for mining and utilization of coal, thermal energy, methane gas, groundwater, dry residue chemicals from desalination and coal mining waste, and to analyse and make changes to improve performance and reduce costs.

      Practical implications. The proposed complex of organizational solutions based on the process approach tools to ensure the effective implementation of a promising production model for mining and processing of mineral resources in PJSC “DTEK Pavlohradvuhillia” coal mines provides an opportunity to predict the results and develop development strategies based on various scenarios, analyze the interaction of various factors and their influence on the results of the production complex functioning, while reducing costs for experiments and testing of various production technologies.

      Keywords: sustainable development, organization of production, field mining, process approach, organizational concept, workflow identification


      REFERENCES

  1. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 237-238. https://doi.org/10.1201/b16354-43
  2. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, 66, 03001. https://doi.org/10.1051/e3sconf/20186603001
  3. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 35-40. https://doi.org/10.1201/b13157-7
  4. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https://doi.org/10.15407/mining11.02.001
  5. Klimkina, I., Kharytonov, M., & Zhukov, O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 2, 82-93. https://doi.org/10.5755/j01.erem.74.2.19940
  6. Griadushchiy, Y., Korz, P., Koval, O., Bondarenko, V., & Dychkovskiy, R. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 2-7. https://doi.org/10.1201/noe0415436700.ch1
  7. Bondarenko, V., Kovalevska, I., Cawood, F., Husiev, O., Snihur, V., & Jimu, D. (2021). Development and testing of an algorithm for calculating the load on support of mine workings. Mining of Mineral Deposits, 15(1), 1-10.
  8. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, 277, 137-146. https://doi.org/10.4028/www.scientific.net/ssp.277.137
  9. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2013). Mining of mineral deposits. London, United Kingdom: CRC Press, Taylor & Francis Group, 382 p. https://doi.org/10.1201/b16354
  10. Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 131-138.
  11. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, 10, 878977. https://doi.org/10.3389/fenvs.2022.878977
  12. Vagonova, O.G., & Volosheniuk, V.V. (2012). Mining enterprises’ economic strategies as derivatives of nature management in the system of social relations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 127-134.
  13. Stukalo, N., Lytvyn, M., Petrushenko, Y., & Omelchenko, Y. (2020). The achievement of the country’s sustainable development in the conditions of global threats. E3S Web of Conferences, 211, 01029. https://doi.org/10.1051/e3sconf/202021101029
  14. Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 118-121.
  15. Kulikov, P., Aziukovskyi, O., Vahonova, O., Bondar, O., Akimova, L., Akimov, O., & Akimov, O. (2022). Post-war economy of Ukraine: Innovation and investment development project. Economic Affairs (New Delhi), 67(5), 943-959. https://doi.org/10.46852/0424-2513.5.2022.30
  16. Li, Q. (2021). The view of technological innovation in coal industry under the vision of carbon neutralization. International Journal of Coal Science & Technology, 8(6), 1197-1207. https://doi.org/10.1007/s40789-021-00458-w
  17. Bondarenko, V.I., Symanovych, H.A., Kovalevska, I.A., Shyshov, M.V., & Yakovenko, V.H. (2023). Geomechanical substantiation of parameters for safe completion of mining the coal reserves adjacent to main workings. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 46-52. https://doi.org/10.33271/nvngu/2023-1/046
  18. Kovalevska, I. (2006). Minimizing coal losses when extracting thin coal seams with the use of auger mining technologies. International Mining Forum 2006: New Technological Solutions in Underground Mining, 27-34. https://doi.org/10.1201/noe0415401173.ch4
  19. Circular material use rate. (n.d.). Electronic resource. Retrieved from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Circular_material_use_rate,_EU,_2004-2021_(%25_of_material_input_for_domestic_use).png
  20. Bоndаrenkо, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 21-28. https://doi.org/10.29202/nvngu/2018-2/4
  21. Salieiev, I.A., Bondarenko, V.I., Symanovych, H.A., & Kovalevska, I. (2021). Development of a methodology for assessing the expediency of mine workings decommissioning based on the geomechanical factor. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 10-16. https://doi.org/10.33271/nvngu/2021-4/010
  22. Bardas, А., & Horpynych, O. (2014). Corporate governance of vertically integrated coal and methane mining holdings. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 457-464. https://doi.org/10.1201/b17547
  23. Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element method at multivariate calculation of mine massif – combined support system. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 7-13. https://doi.org/10.1201/b13157-3
  24. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 159-163. https://doi.org/10.1201/b16354-28
  25. Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1-16. https://doi.org/10.33271/mining17.01.001
  26. Hammer, M., & Champy, J. (1993). Reengineering the corporation: A manifesto for business revolution. New York, United States: Harper Collins, 223 p.
  27. Hammer, M., & Hershman, L. (2010). Faster cheaper better: The 9 levels for transforming how work gets done. New York, United States: Crown Business, 320 p.
  28. Robson, M., & Ullah, Ph. (1996). A practical guide to business process re-engineering. Vermont, United States: Gower, 159 p.
  29. Davenport, T. (1993). Process innovation: Reengeneering work information technology. Boston, United States: Harvard Business School Press, 352 р.
  30. Harrington, J. (2006). Process management excellence. Chicago, United States: Paton Press LLC, 140 p.
  31. Deming, E. (1986). Out of the crisis. Cambridge, United States: Massachusetts Institute of Technology, 524 р.
  32. Anderson, B. (1999). Business process. Improvement toolbox. Milwaukee, United States: ASQ Quality Press, 233 р.
  33. Laguna, M., & Marklund, J. (2013). Business process modeling. Simulation and design. New York, United States: CRC Press, 523 p. https://doi.org/10.1201/b14763
  34. Verbeek, R., Ter Haar Romeny, B., & Heezen, M. (2014). Business process modeling. Simulation and optimization. New York, United States: Springer, 543 p.
  35. Weske, M. (2007). Business process management: Concepts, languages, architectures. Potsdam, Germany: Springer, 372 p.
  36. Vom Brocke, J., & Rosemann, M. (2015). Handbook on business process management. Berlin, Germany: Springer, 420 p. https://doi.org/10.1007/978-3-642-45103-4
  37. Wil van der Aalst, W.M.P. (2013). Business process management: Concepts, methods, and information systems. New York, United States: Springer, 120 p.
  38. Tupkalo, M. (2016) Metodolohichni osnovy biznes-inzhynirynhu suchasnykh protsesno-oriientovanykh pidpryiemstv. Kyiv, Ukraine: Derzhavnyi universytet telekomunikatsii, 283 s.
  39. Prykhodko, L.M. (2011) Istorychnyi rozvytok pohliadiv na udoskonalennia biznes-protsesiv. Visnyk Natsionalnoho Universytetu “Lvivska politekhnika”, 684, 191-193.
  40. Fursova, N.Ye., & Kozuniak, I.P. (2018). Modeliuvannia biznes-protsesiv: Teoriia ta praktyka. Kyiv, Ukraina: Kondor, 244 s.
  41. Dziuba, V.V., & Zaitseva, O.V. (2019). Upravlinnia biznes-protsesamy: metodolohiia, modeli ta informatsiini tekhnolohii. Odesa, Ukraina: Instytut kompiuternykh nauk, 122 s.
  42. Lepeiko, T.I., & Kotlyk, A.V. (2009). Reinzhynirynh biznes-protsesiv. Kharkiv, Ukraina: Kharkivskyi natsionalnyi ekonomichnyi universytet, 80 s.
  43. Pistunov, I.M. (2021). Modeliuvannia biznes protsesiv. Dnipro, Ukraina: NTU “Dniprovska politekhnika”, 130 s.
  44. Kozyr, S.V., Sliesariev, V.V., & Us, S.А. (2022). Modeliuvannia ta reinzhynirynh biznes-protsesiv. Dnipro, Ukraina: NTU “Dniprovska politekhnika”, 163 s.
  45. Taraniuk, L.M. (2011) Motodolohiia reinzhynirynhu biznes-protsesiv promyslovykh pidpryiemstv. Mekhanizm Rehuliuvannia Ekonomiky, 1, 111-119.
  46. Kryvoruchko, O.M., & Sukach, Yu.O. (2012). Menedzhment biznes-protsesiv avtotransportnykh pidpryiemstv. Kharkiv, Ukraina: Kharkivskyiy natsionalnyi avtomobilno-dorozhnii universytet, 244 s.
  47. Vynohradova, О.V. (2006). Reinzhynirynh biznes-protsesiv torhivelnukh pidpryiemstv. Donetsk, Ukraina: DоnNUЕТ, 183 s.
  48. Oleksandrova, О.М., & Khludina, O.I. (2018). Modeli realizatsii biznes-protsesiv v upravlinni okhoronoiu zdorovia. Visnyk Natsionalnoho Universytetu “Lvivska Politekhnika”, 895, 77-85.
  49. Holovnina, M.M., & Korol, I.P. (2019). Modeliuvannia biznes-protsesiv malykh i serednikh pidpryiemstv. Ekonomichnyi Analiz, 29(1), 136-144.
  50. Polinkevych, O.M. (2014). Mekhanizmy adaptatsii biznes-protsesiv promyslovykh pidpryiemstv do novoi ekonomiky. Lutsk, Ukraina: Lutskyi natsionalnyi tekhnichnyi universytet, 448 с.
  51. Bondarenko, V.I., Samusya, V.I., & Smolanov, S.N. (2005). Mobile lifting units for wrecking works in pit shafts. Gornyi Zhurnal, 5, 99-100.
  52. Kovalevs’ka, I., Vivcharenko, V., & Snigur, V. (2013). Specifics of percarbonic rock mass displacement in longwalls end areas and extraction workings. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 29-34. https://doi.org/10.1201/b16354-6
  53. Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, 5, 14-17.
  54. Kovalevs’ka, I., Fomychov V., Illiashov, M., & Chervatuk, V. (2012). The formation of the finite-element model of the system “undermined massif-support of stope.” Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 83-90. https://doi.org/10.1201/b13157-14.
  55. Лицензия Creative Commons