Predicting the magnitude of technogenic earthquakes during underground mining of the Zhezkazgan ore field
Nurbol Khuangan1, Sergey Asainov1, Timur Khojayev2, Zhanat Azimbayeva1, Kobey Atageldiyev1, Gulnur Nurshaiykova3, Asel Akylbayeva3
1Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan
2Geomark Research & Engineering LLP, Karaganda, Kazakhstan
3D. Serikbayev East Kazakhstan Technical University
Min. miner. depos. 2024, 18(1):45-53
https://doi.org/10.33271/mining18.01.045
Full text (PDF)
      ABSTRACT
      Purpose. Determining a relationship between the shear/failure of the rock mass and the technogenic earthquakes caused by them during underground mining of ore deposits with the derivation of an equation for the dependence of the technogenic earthquake indicators for the conditions of the Zhezkazgan copper-ore field.
      Methods. The research methodology consists of studying and analyzing early research on technogenic earthquakes by the method of statistical data processing. Calculation of rock mass deformation distribution in the study area is based on numerical modeling in the Comsol Multiphysics 5.6 and MATLAB 2020 software package environment. Calculations are performed based on solving a plane problem using the Finite Element Method (FEM).
      Findings. Based on the transition from the failure area to subsidence and shear values of the overlying rock mass stratum, an equation for the dependence of the earthquake magnitude on the numerical values of the mass subsidence or shear has been obtained.
      Originality. For the first time, based on the physics and geomechanics of rock mass shear processes, empirical-analytical formulas have been obtained that make it possible to predict the technogenic earthquake magnitude during underground mining of ore deposits in the conditions of the Zhezkazgan copper-ore field.
      Practical implications. Preliminary predictive calculations made by the obtained formulas for the conditions of the active mine No. 31 of the East-Zhezkazgan mine, ТОО Kazakhmys Smelting, show acceptable results of magnitude value, comparable to in-situ measurements during field mining. This prediction makes it possible to pre-calculate the technogenic earthquake magnitude at the stage of designing mining operations and make appropriate scientifically sound decisions during further mining of the field.
      Keywords: ore deposit, underground mining, mine, failure, rock mass shear, technogenic earthquake
      REFERENCES
- Issatayeva, F.M., Aubakirova, G.M., Maussymbayeva, A.D., Togaibayeva, L.I., Biryukov, V.V., & Vechkinzova, E. (2023). Fuel and energy complex of Kazakhstan: Geological and economic assessment of enterprises in the context of digital transformation. Energies, 16(16), 6002. https://doi.org/10.3390/en16166002
- Rudko, G.I., Myatchenko, A.V., Isataeva, F.M., & Portnov, V.S. (2018). Geological-economic estimation of Kazakhstan deposits. Sustainable Development of Mountain Territories, 10(4), 471-480. https://doi.org/10.21177/1998-4502-2018-10-4-471-480
- Umarbekova, Z.T., Zholtayev, G.Z., Zholtayev, G.Z., Amralinova, B.B., & Mataibaeva, I.E. (2020). Silver halides in the hypergene zone of the Arkharly Gold Deposit as indicators of their formation in dry and hot climate (Dzungar Alatau, Kazakhstan). International Journal of Engineering Research and Technology, 13(1), 181-190. https://doi.org/10.37624/ijert/13.1.2020.181-190
- Togizov, K., Issayeva, L., Muratkhanov, D., Kurmangazhina, M., Swęd, M., & Duczmal-Czernikiewicz, A. (2023). Rare earth elements in the Shok-Karagay Ore Fields (Syrymbet ore district, Northern Kazakhstan) and visualisation of the deposits using the geography information system. Minerals, 13(11), 1458. https://doi.org/10.3390/min13111458
- Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rock mass assessment for man-made disaster risk management. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 403-409. https://doi.org/10.1201/b19901-70
- Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, 201, 01039. https://doi.org/10.1051/e3sconf/202020101039
- Bekbergenov, D., Jangulova, G., Kassymkanova, K.K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
- Nurmagambetov, A. (2010). Tekhnogennye seysmicheskie yavleniya, svyazannye s razrabotkoy i ekspluatatsiey mestorozhdeniy tverdykh poleznykh iskopaemykh, nefti i gaza. Geologiya i Okhrana Nedr, 1(34), 1-12.
- Lovchikov, A.V. (2016). Nekotorye voprosy proyavleniya gorno-tektonicheskikh udarov i tekhnogennykh zemletryaseniya na rudnikakh. Prognoz i Preduprezhdenie Tektonicheskikh Gornykh Udarov i Zemletryaseniya: Izmerenie Deformatsiy, Ostatochnykh i Deystvuyushchikh Napryazheniy v Gornom Massive, 39-49.
- Sokolova, I.N., Mikhaylova, N.N., Velikanov, A.E., & Poleshko, N.N. (2017). Tekhnogennaya seysmichnost’ na territorii Kazakhstana. Vestnik NYaTs RK, 2, 47-56.
- Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V. & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 37-41. https://doi.org/10.29202/nvngu/2019-1/20
- Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, 280, 08001. https://doi.org/10.1051/e3sconf/202128008001
- Lawal, A.I., Kwon, S., Hammed, O.S., & Idris, M.A. (2021). Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN. International Journal of Mining Science and Technology, 31(2), 265-277. https://doi.org/10.1016/j.ijmst.2021.01.007
- Askaripour, M., Saeidi, A., Rouleau, A., & Mercier-Langevin, P. (2022). Rockburst in underground excavations: A review of mechanism, classification, and prediction methods. Underground Space, 7(4), 577-607. https://doi.org/10.1016/j.undsp.2021.11.008
- Qiu, Y., & Zhou, J. (2023). Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotechnica, 18(12), 6655-6685. https://doi.org/10.1007/s11440-023-01988-0
- Ren, F., Zhu, C., He, M., Shang, J., Feng, G., & Bai, J. (2023). Characteristics and precursor of static and dynamic triggered rockburst: insight from multifractal. Rock Mechanics and Rock Engineering, 56(3), 1945-1967. https://doi.org/10.1007/s00603-022-03173-3
- Lapin, V., Makish, N., Kassenov, K., Omarov, Z., & Kassenov, D. (2022). Spectral response characteristic of local earthquakes according to instrumentation readings of the engineering-seismometrical service. International School on Neural Networks, 1437-1446. https://doi.org/10.1007/978-3-031-11051-1_147
- Shepetov, A., Kryakunova, O., Mamina, S., Ryabov, V., Saduyev, N., Sadykov, T., & Zhukov, V. (2021). Geophysical aspect of cosmic ray studies at the Tien Shan mountain station: Monitoring of radiation background, investigation of atmospheric electricity phenomena in thunderclouds, and the search for the earthquake precursor effects. Physics of Atomic Nuclei, 84, 1128-1136. https://doi.org/10.1134/S1063778821130330
- Lapin, V., Makish, N., Kassenov, K., Omarov, Z., & Kassenov, D. (2021). Instrumental records received in 11 storey steel frame building during a remote earthquake. E3S Web of Conferences, 258, 09078. https://doi.org/10.1051/e3sconf/202125809078
- Sydykov, A., Sadykova, A.B., & Siylkanova, A.O. (2021). Diurnal periodicity of weak earthquakes in the Zhongar North Tian Shan region. Surveys in Geophysics, 42, 21-41. https://doi.org/10.1007/s10712-020-09622-4
- Tolovkhan, B., Demin, V., Amanzholov, Zh., Smagulova, A., Tanekeyeva, G., Zairov, Sh., Krukovskyi, O., & Cabana, E. (2022). Substantiating the rock mass control parameters based on the geomechanical model of the Severny Katpar deposit, Kazakhstan. Mining of Mineral Deposits, 16(3), 123-133. https://doi.org/10.33271/mining16.03.123
- Lenhardt, W.A. (2009). The impact of earthquakes on mining operations. BHM Berg-und Hüttenmännische Monatshefte, 154(6), 249-254. https://doi.org/10.1007/s00501-009-0470-1
- Kocharyan, G.G., Budkov, A.M., & Kishkina, S.B. (2018). Initiation of tectonic earthquakes during underground mining. Journal of Mining Science, 54, 561-568. https://doi.org/10.1134/S1062739118044014
- Pysmennyi, S., Chukharev, S., Peremetchy, A., Fedorenko, S., & Matsui, A. (2023). Study of stress concentration on the contour of underground mine workings. Inżynieria Mineralna, 1(1(51)), 69-78. https://doi.org/10.29227/IM-2023-01-08
- Hsiung, S.M., Blake, W., Chowdhury, A.H., & Williams, T.J. (1992). Effects of mining-induced seismic events on a deep underground mine. Pure and Applied Geophysics, 139, 741-762. https://doi.org/10.1007/BF00879961
- Srikrishnan, S., Porathur, J.L., & Agarwal, H. (2014). Impact of earthquake on mining slopes – A numerical approach. Arabian Journal of Geosciences, 7(12), 5193-5208. https://doi.org/10.1007/s12517-013-1144-6
- Mitchell, J.K., & Green, R.A. (2017). Some induced seismicity considerations in geo-energy resource development. Geomechanics for Energy and the Environment, 10, 3-11. https://doi.org/10.1016/j.gete.2017.01.001
- Adushkin, V.V. (2016). Tectonic earthquakes of anthropogenic origin. Izvestiya, Physics of the Solid Earth, 52, 173-194.
- Malinowska, A.A., Witkowski, W.T., Guzy, A., & Hejmanowski, R. (2018). Mapping ground movements caused by mining-induced earthquakes applying satellite radar interferometry. Engineering Geology, 246, 402-411. https://doi.org/10.1016/j.enggeo.2018.10.013
- Owczarz, K., & Blachowski, J. (2020). Analysis of the geometry of surface deformations caused by induced tremors in the area of underground copper mining. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 149-156. https://doi.org/10.5194/isprs-annals-V-3-2020-149-2020
- Nurpeissova, M., Rysbekov, К., Levin, Е., Derbisov, K., & Nukarbekova, Z. (2021). Study of slow motions of the earth surface. Engineering Journal of Satbayev University, 143(5), 3-9. https://doi.org/10.51301/vest.su.2021.i6.01
- Nurpeissova, M., Bitimbayev, M.Zh., Rysbekov, K.В., Derbisov, K., Тurumbetov, Т., & Shults, R. (2020). Geodetic substantiation of the Saryarka copper ore region. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(444), 194-202. https://doi.org/10.32014/2020.2518-170X.147
- Khozyaykina, N.V., Soldatova, B.S., & Khozyaykin, A.V. (2014). Tekhnogennye seysmicheskie yavleniya pri ekspluatatsii mestorozhdeniy tverdykh poleznykh iskopaemykh. Geomekhanіka і Geotekhnіka, 104-110.
- Shkolnik, V.S., Rogov, E.I., Karabalin, U.S., Ogay, E.K., & Rogov A.E. (2015). Sposob isklyucheniya tekhnogennykh katastrof pri dobyche nefti zavodneniem plastov s yacheistymi skhemami. Nauchno-Tekhnicheskoe Obespechenie Gornogo Proizvodstva, 87, 357-362.
- Kozhogulov, K.Ch. (2015). Obespechenie bezopasnosti pri kombinirovannoy razrabotke rudnykh mestorozhdeniy Kyrgyzstana. Nauchno-Tekhnicheskoe Obespechenie Gornogo Proizvodstva, 87, 45-48.
- Velikanov, A.E., Mikhaylova, N.N., Sokolova, I.N., Aristova, I.L., & Mukambaev, A.S. (2013). Izuchenie istochnikov promyshlennykh vzryvov na territorii Kazakhstana. Vestnik NYaTs RK, 2, 77-85.
- Bekbergenov, D.K., & Tolysbaev, A.K. (2015). Zarubezhnaya praktika i podzemnaya razrabotka Zhezkazganskogo mestorozhdeniya kamerno-stolbovoy sistemoy. Nauchno-Tekhnicheskoe Obespechenie Gornogo Proizvodstva, 87, 1-14.
- Pihulevskyi, P.G., Anisimova, L.B., Kalinichenko, O.O., Panteleeva, N.B., & Hanchuk, O.V. (2021). Analysis of natural and technogenic factors on the seismicity of Kryvyi Rih. Journal of Physics: Conference Series, 1840(1), 012018. https://doi.org/10.1088/1742-6596/1840/1/012018
- Adushkin, V.V., & Oparin, V.N. (2013). Ot yavleniya znakoperemennoy reaktsii gornykh porod na dinamicheskie vozdeystviya k volnam mayatnikovogo tipa v napryazhennykh geosredakh. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2, 3-46.
- Nurpeisova, M.B., & Kurmanbaev, O.S. (2016). Laws of development of geomechanical processes in the rock mass Maykain mine. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(420), 109-115.
- Stupnik, M., Kalinichenko, V., & Pismennyi, S. (2013). Pillars sizing at magnetite quartzites room-work. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 11-15. https://doi.org/10.1201/b16354-3
- Yakovlev, D.V., Tsirel’, S.V., & Mulev, S.N. (2016). Laws of spreading and operational evaluation procedure for induced seismicity in mines and in mining areas. Journal of Mining Science, 52(2), 233-244. https://doi.org/10.1134/S1062739116020369
- Zhou, J., Zhang, Y., Li, C., He, H., & Li, X. (2023). Rockburst prediction and prevention in underground space excavation. Underground Space, 14, 70-98. https://doi.org/10.1016/j.undsp.2023.05.009
- Tsai, C.H., Abdrakhmatov, K., Mukambayev, A., Elliott, A.J., Elliott, J.R., Grützner, C., & Wilkinson, R. (2022). Probing the upper end of intracontinental earthquake magnitude: A prehistoric example from the Dzhungarian and Lepsy Faults of Kazakhstan. Tectonics, 41(10), e2022TC007300. https://doi.org/10.1029/2022TC007300
- Tazhibaev, K.T. (2016). Nauchno-tekhnicheskie osnovy prognoza p preduprezhdeniya tektonicheskikh gornykh udarov i zemletryaseniy. Prognoz i Preduprezhdenie Tektonicheskikh Gornykh Udarov i Zemletryaseniya: Izmerenie Deformatsiy, Ostatochnykh i Deystvuyushchikh Napryazheniy v Gornom Massive, 25-37.
- Batugin, A.S., & Shermatova S.S. (2016). K otsenke maksimalnoy magnitudy tekhnogennogo zemletryaseniya v gornopromyshlennom rayone. Prognoz i Preduprezhdenie Tektonicheskikh Gornykh Udarov i Zemletryaseniya: Izmerenie Deformatsiy, Ostatochnykh i Deystvuyushchikh Napryazheniy v Gornom Massive, 12-13.
- German, V.I., & Mansurov, V.A. (2010). Prognoz obrusheniy na Zhezkazganskom mednom mestorozhdenii. Gornyy Informatsionno-Analiticheskiy Byulleten, 1, 95-105.
- Rysbekov, K.B., Toktarov, A.A., & Kalybekov, T. (2021). Technique for justifying the amount of the redundant developed reserves considering the content of metal in the mining ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076
- Baibatsha, A.B., Bekbotayeva, A.A., & Bekbotayev, A.T. (2015). Ore minerals of Carboniferous copper sediment-hosted Zhezkazgan deposit (Central Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 1, 329-335.
- Portnov, V.S., Yurov, V.M., & Maussymbayeva, A.D. (2016). Applied problems of thermodynamic approach to the analysis of geophysical information. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 5-11.
- Shoimuratov, T.H., Hajitov, N.Sh., & Kurbanyazov, S.K. (2022). The role of hydrodynamic and structural-tectonic factors in the formation of hydrocarbon deposits in the Jurassic sediments of the Bukharo-Khiva region. Engineering Journal of Satbayev University, 144(4), 41-45. https://doi.org/10.51301/ejsu.2022.i4.06
- Dashchenko, A.F., Kirillov, V.Kh., Kolomiets, L.V., & Orobey, V.F. (2003). MATLAB v inzhenernykh i nauchnykh raschetakh. Odesa, Ukraina: Astroprint, 216 s.
- Baibatsha, A.B., Bekbotayev, A.T., & Bekbotayeva, A.A. (2013). Ore-bearing strata lithology of the Zhezkazgan copper sandstones deposit. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 1, 135-140.
- Aidarbekov, Z.K., Istekova, S.A., & Glass, H. (2021). Complex of geophysical research for studying geological structure of Zhezkazgan ore region in Kazakhstan. Engineering and Mining Geophysics, 1, 1-9. https://doi.org/10.3997/2214-4609.202152070
- Aidarbekov, Z.K., & Istekova, S.A. (2022). Classification of geophysical fields in the study of geological and structural features of the Zhezkazgan ore district. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(452), 33-48. https://doi.org/10.32014/2022.2518-170X.158
- Baymakhan, R.B., Muta, A.N., Tileikhan, A., & Kozhogulov, K.C. (2023). On the use of the finite element method in the study of the stress-strain state of the contour of the Annie Cave on Mount Arsia. Engineering Journal of Satbayev University, 145(2), 31-36. https://doi.org/10.51301/ejsu.2023.i2.05
- Wang, S., Zheng, H., Li, C., & Ge, X. (2011). A finite element implementation of strain-softening rock mass. International Journal of Rock Mechanics and Mining Sciences, 48(1), 67-76. https://doi.org/10.1016/j.ijrmms.2010.11.001
- Mao, H., Xu, N., Zhou, Z., Sha, C., Xiao, P., & Li, B. (2024). Failure mechanism and deformation forecasting of surrounding rock mass in an underground cavern based on engineering analogy method. Tunnelling and Underground Space Technology, 143, 105497. https://doi.org/10.1016/j.tust.2023.105497
- Imansakipova, B.B., Baygurin, Z.D., Soltabaeva, S.T., Milev, I., & Miletenko, I.V. (2014). Causes of strain of buildings and structures in areas of abnormal stress and surveillance terrestrial laser scanners. Life Science Journal, 11(9s), 165-170.
- Uzbekov, A.N., & Poleshko, N.N. (2022). Stress and strain state of the Kazakh shield from the earthquake focal mechanisms data. Geodynamics and Tectonophysics, 13(1), 571. https://doi.org/10.5800/GT-2022-13-1-0571
- Akhanov, T.M. (2010). Tekhnologicheskie osobennosti podzemnoy razrabotki zhezkazganskogo mestorozhdeniya. Marksheyderiya i Nedropolzovanie, 1, 38-41.