Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Research into mine working fastening technology in the zones of increased rock pressure behind the longwall face to ensure safe mining operations

Vladimir Demin1, Elvira Khalikova2, Mukhammedrakhym Rabatuly 2, Zhursyn Amanzholov2, Aila Zhumabekova2, Dinara Syzdykbaeva2, Gulnara Bakhmagambetova3, Yerbol Yelzhanov4

1Ekibastuz Technical and Engineering Institute named after the Academician K. Satpayev, Ekibastuz, Kazakhstan

2Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

3Satbayev University, Almaty, Kazakhstan

4International Educational Corporation, Almaty, Kazakhstan


Min. miner. depos. 2023, 18(1):27-36


https://doi.org/10.33271/mining18.01.027

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to substantiate the technological solutions to ensure the rock mass stability through a rational approach to strengthening the zones of increased rock pressure behind the longwall face.

      Methods. To achieve the purpose set, a complex research method is used, which includes an analysis of practical experience in mining medium-thickness flat-lying coal seams, a study of the stress-strain state of rocks above the coal mass marginal area, and mine research into the influence of mining-technical factors on the state of zonal preparatory workings.

      Findings. The patterns of stress influence on the mine working stability have been determined depending on the mining-technological parameters of mining operations. Empirical dependences of the stress influence on the mine working stability have been revealed. The parameters of stress influence on the mine working stability have been found depending on the mining-technological parameters of mining operations.

      Originality. The conducted research made it possible to determine the degree of influence of mining-technical conditions of mining operations on deformations in border rocks with various types of support in extraction workings, which helps to understand the dynamics of deformation processes occurring in the coal-rock mass surrounding mine workings maintained behind the longwall face.

      Practical implications. The revealed deformation patterns can be used in calculating the rock pressure manifestations when conducting mine workings on deep levels under various mining-technical conditions of mining operations, which has practical significance for ensuring the stability and safety of maintaining mine workings at the stage of mining operations. The use of roof-bolt support is proposed as an effective means not only to ensure stability, but also to maintain safe operating conditions in mine workings.

      Keywords: mine workings, fastening, geomechanical processes, roof-bolt support, rock pressure


      REFERENCES

  1. Mustapaevich, D.K., & Mnajatdin, M.D. (2021). Properties of coal, processes in coal mining companies, methods of coal mining in the World. Journal NX, 7(10), 231-236.
  2. Zholmagambetov, N., Khalikova, E., Demin, V., Balabas, A., Abdrashev, R., & Suiintayeva, S. (2023). Ensuring a safe geomechanical state of the rock mass surrounding the mine workings in the Karaganda coal basin, Kazakhstan. Mining of Mineral Deposits, 17(1), 74-83. https://doi.org/10.33271/mining17.01.074
  3. Budi, G., Rao, K.N., & Mohanty, P. (2023). Field and numerical modelling on the stability of underground strata in longwall workings. Energy Geoscience, 4(1), 1-12. https://doi.org/10.1016/j.engeos.2022.07.003
  4. Xiong, Y., Kong, D., Wen, Z., Wu, G., & Liu, Q. (2022). Analysis of coal face stability of lower coal seam under repeated mining in close coal seams group. Scientific Reports, 12(1), 1-14. https://doi.org/10.1038/s41598-021-04410-5
  5. Wang, G., Ren, H., Zhao, G., Zhang, D., Wen, Z., Meng, L., & Gong, S. (2022). Research and practice of intelligent coal mine technology sys-tems in China. International Journal of Coal Science & Technology, 9(1), 24.0 https://doi.org/10.1155/2022/6418082
  6. Hu, Q., Cui, X., Liu, W., Feng, R., Ma, T., & Li, C. (2022). Quantitative and dynamic predictive model for mining-induced movement and deformation of overlying strata. Engineering Geology, 311, 106876. https://doi.org/10.1016/j.enggeo.2022.106876
  7. Bekbassarov, S., Soltabaeva, S., Daurenbekova, A., & Ormanbekova, A. (2015). “Green” economy in mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 431-434. https://doi.org/10.1201/b19901-75
  8. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
  9. Majkherchik, T., Gajko, G.I., & Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol, 11, 27-29.
  10. Zheng, H., & Matayev, A. (2022). Investigation into the effect of multi-component coal blends on properties of metallurgical coke via petrographic analysis under industrial conditions. Sustainability, 14(16), 9947. https://doi.org/10.3390/su14169947
  11. Arystan, I.D., Nemova, N.A., Baizbaev, M.B., & Mataev, A.K. (2021). Efficiency of modified concrete in lining in under-ground structures. IOP Conference Series: Earth and Environmental Science, 773(1), 012063. https://doi.org/10.1088/1755-1315/773/1/012063
  12. Suorineni, F.T., Hebblewhite, B., & Saydam, S. (2014). Geomechanics challenges of contemporary deep mining: A suggested model for increasing future mining safety and productivity. Journal of the Southern African Institute of Mining and Metallurgy, 114(12), 1023-1032.
  13. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, 10, 852591. https://doi.org/10.3389/fenvs.2022.852591
  14. Taran, I. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear out-put. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 78-85.
  15. Abdullayev, S., Tokmurzina, N., & Bakyt, G. (2016). The determination of admissible speed of locomotives on the railway tracks of the Republic of Kazakhstan. Transport Problems, 11(1), 61-68. https://doi.org/10.20858/tp.2016.11.1.6
  16. Bakyt, G.B., Seidemetova, Z.S., Abdullayev, S.S., Adilova, N.J., Kamzina, A.D., & Aikumbekov, M.N. (2020). Create a traffic control information space in the logistics environment. Journal of Advanced Research in Law and Economics, 11(2), 290-300. https://doi.org/10.14505/jarle.v11.2(48).03
  17. Taran, I.A., & Klimenko, I.Y. (2014). Transfer ratio of double-split transmissions in case of planetary gear input. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 60-66.
  18. Abdullayev, S.S., Bakyt, G.B., Aikumbekov, M.N., Bondar, I.S., & Auyesbayev, Y.T. (2021). Determination of natural modes of railway overpasses. Journal of Applied Research and Technology, 19(1), 1-10. https://doi.org/10.22201/icat.24486736e.2021.19.1.1487
  19. Bekbergenov, D., Jangulova, G., Kassymkanova, K.K., & Bektur, B. (2020). Mine technical system with repeated geotechnology within new frames of sustainable development of underground mining of caved deposits of the Zhezkazgan field. Geodesy and Cartography, 46(4), 182-187. https://doi.org/10.3846/gac.2020.10571
  20. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8
  21. Dai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., Guo, J., Zhakypbek, Y., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultra-thick steep seams. International Journal of Mining Science and Technology, 32(1), 103-112. https://doi.org/10.1016/j.ijmst.2021.10.003
  22. Soltabayeva, S. (2023). Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, 13, 19327. https://doi.org/10.1038/s41598-023-46814-5
  23. Wu, Q., Liu, H., Dai, B., Cheng, L., Li, D., & Qin, P. (2023). Influence of base-angle bolt support parameters and different sections on overall stability of a roadway under a deeply buried high stress environment based on numerical simulation. Sustainability, 15(3), 2496. https://doi.org/10.3390/su15032496
  24. Yang, H., Han, C., Zhang, N., Sun, Y., Pan, D., & Sun, C. (2020). Long high-performance sustainable bolt technology for the deep coal roadway roof: A case study. Sustainability, 12(4), 1375. https://doi.org/10.3390/su12041375
  25. Sdvyzhkova, O., Dmytro, B., Moldabayev, S., Rysbekov, K., & Sarybayev, M. (2020). Mathematical modeling a stochastic variation of rock properties at an excavation design. International Multidisciplinary Scientific GeoConference: SGEM, 20(1.2), 165-172. https://doi.org/10.5593/sgem2020/1.2/s03.021
  26. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., & Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 58-64.
  27. Vlasova, E., Кovalenko, V., Kotok, V., & Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 33-39. https://doi.org/10.15587/1729-4061.2016.79559
  28. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, 66, 03001. https://doi.org/10.1051/e3sconf/20186603001
  29. Imashev, A.Zh., Suimbayeva, A.M., Abdibaitov, Sh.A., Musin, A.A., & Asan, S.Yu. (2020). Justification of the optimal cross-sectional shape of the mine workings in accordance with the rating classification. Ugol, 6, 4-9. https://doi.org/10.18796/0041-5790-2020-6-4-9
  30. Diomin, V.F., Khalikova, E.R., Diomina, T.V., & Zhurov, V.V. (2019). Studying coal seam bedding tectonic breach impact on supporting parameters of mine workings with roof bolting. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 16-21. https://doi.org/10.29202/nvngu/2019-5/5
  31. Nehrii, S., Nehrii, T., Zolotarova, O., & Volkov, S. (2021). Investigation of the geomechanical state of soft adjoining rocks under protective constructions. Rudarsko-Geološko-Naftni Zbornik, 36(4), 61-71. https://doi.org/10.17794/rgn.2021.4.6
  32. Lama, B., & Momayez, M. (2023). Review of non-destructive methods for rock bolts condition evaluation. Mining, 3(1), 106-120. https://doi.org/10.3390/mining3010007
  33. Yang, H., Han, C., Zhang, N., Pan, D., & Xie, Z. (2020). Research and application of low density roof support technology of rapid excavation for coal roadway. Geotechnical and Geological Engineering, 38, 389-401. https://doi.org/10.1007/s10706-019-01029-2
  34. Nemova, N.A., Stakhanov, D., Hasan, B., & Zhumabekova, A.E. (2020). Technological solutions development for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 17-24. https://doi.org/10.33271/nvngu/2020-2/017
  35. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift over-working. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 197-201. https://doi.org/10.1201/b16354-35
  36. Huang, W., Liu, S., Gao, M., Hou, T., Wang, X., Zhao, T., & Xie, Z. (2022). Improvement of reinforcement performance and engineering application of small coal pillars arranged in double roadways. Sustainability, 15(1), 292. https://doi.org/10.3390/su15010292
  37. Doan, D.V., & Xia, B. (2019). Control technology for coal roadway with mudstone interlayer in Nui Beo coal mine. Geo-Mate Journal, 17(60), 259-266. https://doi.org/10.21660/2019.60.39560
  38. Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into impact of leaving waste rocks in the mined-out space on the geomechanical state of the rock mass surrounding the longwall face. Energies, 15(24), 9522. https://doi.org/10.3390/en15249522
  39. Jiang, L., Sainoki, A., Mitri, H.S., Ma, N., Liu, H., & Hao, Z. (2016). Influence of fracture-induced weakening on coal mine gateroad stability. International Journal of Rock Mechanics and Mining Sciences, 88, 307-317. https://doi.org/10.1016/j.ijrmms.2016.04.017
  40. Wang, H., Jiang, Y., Zhao, Y., Zhu, J., & Liu, S. (2013). Numerical investigation of the dynamic mechanical state of a coal pillar during longwall mining panel extraction. Rock Mechanics and Rock Engineering, 46, 1211-1221.https://doi.org/10.1007/s00603-012-0337-8
  41. Zhurov, V.V. (2010). Sovershenstvovanie metodiki rascheta parametrov krepleniya vyrabotok s uchetom gornotekhnologicheskikh faktorov. Dissertatsiya na soiskaniye uchenoy stepeni kandidata tekhnicheskikh nauk. Karaganda, Kazakhstan: KarGTU, 115 s.
  42. Sementsov, V.V., Osminin, D.V., & Nifanov, E.V. (2021). Ustoychivost vyemochnykh gornykh vyrabotok pri otrabotke plastov s trudnoobrushayushchimisya krovlyami. Vestnik Nauchnogo Tsentra VostNII po Promyshlennoy i Ekologicheskoy Bezopasnosti, 3, 14-25. https://doi.org/10.25558/VOSTNII.2021.47.12.002
  43. Arystan, I.D., Baizbaev, M.B., Mataev, A.K., Abdieva L.M. Bogzhanova, Zh.K., & Abdrashev, R.M. (2020). Selection and justification of technology for fixing preparatory workings in unstable massifs on the example of the mine 10 years of in-dependence of Kazakhstan. Ugol, 6, 10-14. https://doi.org/10.18796/0041-5790-2020-6-10-14
  44. Demin, V.F., Demina, T.V., Kaynazarov, A.S., & Kaynazarova, A.S. (2018). Evaluation of the workings technological schemes effectiveness to increase the stability of their contours. Sustainable Development of Mountain Territories, 10(4), 606-617.
  45. Demin, V.F., Fofanov, O.B., Demina, T.V., & Yavorskiy, V.V. (2017). Deflected mode of marginal rock massif around mine working boundaries depending on anchoring parameters. IOP Conference Series: Materials Science and Engineering, 177(1), 012042. https://doi.org/10.1088/1757-899X/177/1/012042
  46. Demin, V.F., Isabek, T.K., & Nemova, N.A. (2021). Study of deformation manifestations in the excavation working floor when it is supported by roof bolting. IOP Conference Series: Earth and Environmental Science, 773, 012005. https://doi.org/10.1088/1755-1315/773/1/012005
  47. Bigeldiyev, A., Batu, A., Berdibekov, A., Kovyazin, D., Sidorov, D., Temirkhassov, A., & Narimanov, Y. (2021). Dynamic modeling of the gas discharge of a mine in the Karaganda coal basin under high uncertainty using a multiple realization approach. Petroleum Technology Conference, D041S023R005. https://doi.org/10.2118/206415-MS
  48. Kuchin, Y., Mukhamediev, R., Yunicheva, N., Symagulov, A., Abramov, K., Mukhamedieva, E., & Levashenko, V. (2023). Application of machine learning methods to assess filtration properties of host rocks of uranium deposits in Kazakhstan. Applied Sciences, 13(19), 10958. https://doi.org/10.3390/app131910958
  49. Mukhamediev, R.I., Kuchin, Y., Amirgaliyev, Y., Yunicheva, N., & Muhamedijeva, E. (2022). Estimation of filtration properties of host rocks in sandstone-type uranium deposits using machine learning methods. IEEE Access, 10, 18855-18872. https://doi.org/10.1109/ACCESS.2022.3149625
  50. Meshkov, A.A., Popov, A.L., Popova, Yu.V., Smolin, A.V., & Shabarov, A.N. (2020). Prognoz opasnykh yavleniy v predelakh rabochikh ugolnykh plastov dlya shakhtnogo polya im. V.D. Yalevskogo. Mining Information and Analytical Bulletin, 2, 22-33. https://doi.org/10.25018/0236-1493-2020-2-0-22-33
  51. Imashev, A.Z., Sudarikov, A.E., Musin, A.A., Suimbayeva, A.M., & Asan, S.Y. (2021). Improving the quality of blasting indicators by studying the natural stress field and the impact of the blast force on the rock mass. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(448), 30-35. https://doi.org/10.32014/2021.2518-170X.78
  52. Batyrkhanova, A., Tomilov, A., Zhumabekova, A., Abekov, U., & Demin, V. (2019). Developing technological schemes of driving workings with controlled resistance of contours. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 22-28. https://doi.org/10.29202/nvngu/2019-3/2
  53. Rozenbaum, M.A., & Demekhin, D.N. (2014). Deformational criteria for the stability of roof rocks and rock bolts. Journal of Mining Science, 50, 260-264. https://doi.org/10.1134/S1062739114020082
  54. Abetov, A.E., Uzbekov, A.N., Grib, N.N., & Imaev, V.I. (2020). Newest tectonics and modern geodynamics of mining industrial areas of Central Kazakhstan. IOP Conference Series: Earth and Environmental Science, 459(4), 042011. https://doi.org/10.1088/1755-1315/459/4/042011
  55. Nurpeisova, M.B., & Kurmanbaev, O.S. (2016). Laws of development of geomechanical processes in the rock mass Maykain mine. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(420), 109-115.
  56. Demin, V., Mussin, R., Demina, T., & Zhumabekova, A. (2020). Study of edge protecting anchors influence on soil heaving of the mine working. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 71-80. https://doi.org/10.32014/2020.2518-170X.106
  57. Nurpeissova, M., Rysbekov, К., Levin, Е., Derbisov, K., & Nukarbekova, Z. (2021). Study of slow motions of the earth surface. Engineering Journal of Satbayev University, 143(5), 3-9. https://doi.org/10.51301/vest.su.2021.i5.01
  58. Drizhd, N., Mussin, R., & Alexandrov, A. (2019). Improving the technology of hydraulic impact based on accounting previously treated wells international science and technology conference. IOP Conference Series: Earth and Environmental Science, 272, 022031. https://doi.org/10.1088/1755-1315/272/2/022031
  59. Nurbekova, R., Smirnova, N., Goncharev, I., Sachsenhofer, R.F., Hazlett, R., Smirnov, G., & Fustic, M. (2023). High-quality source rocks in an underexplored basin: The upper Carboniferous-Permian succession in the Zaysan Basin (Kazakhstan). International Journal of Coal Geology, 272, 104254. https://doi.org/10.1016/j.coal.2023.104254
  60. Rakhimbekov, S.M. (2020). Mining technology adaptation criterion. Mining Informational and Analytical Bulletin, 3, 105-113. https://doi.org/10.25018/0236-1493-2020-3-0-105-113
  61. Baymakhan, R.B., Muta, A.N., Tileikhan, A., & Kozhogulov, K.C. (2023). On the use of the finite element method in the study of the stress-strain state of the contour of the Annie Cave on Mount Arsia. Engineering Journal of Satbayev University, 145(2), 31-36. https://doi.org/10.51301/ejsu.2023.i2.05
  62. Takhanov, D., Balpanova, M., Kenetayeva, A., Zholdybayeva, G., & Usupayev, S. (2023). Risk assessments for rockfalls taking into account the structure of the rock mass. E3S Web of Conferences, 443, 04012. https://doi.org/10.1051/e3sconf/202344304012
  63. Zhao, B., Wen, G., Ma, Q., Sun, H., Yan, F., & Nian, J. (2022). Distribution characteristics of pulverized coal and stress-gas pressure-temperature response laws in coal and gas outburst under deep mining conditions. Energy Science & Engineering, 10(7), 2205-2223. https://doi.org/10.1002/ese3.1129
  64. Tsay, B.N., & Sudarikov, A.E. (2007). Mekhanika podzemnykh sooruzheniy. Karaganda, Kazakhstan: KarGTU, 159 s.
  65. Steflyuk, Yu.Yu., Demina, T.V., & Karatayev, A.D. (2015). Programma dlya EVM dlya modelirovaniya napryazhenno-deformirovannogo sostoyaniya massiva vblizi gornykh vyrabotok “Mergel” (programma dlya EVM). Svidetelstvo o gosudarstvennoy registratsii prav na obyekt intellektualnoy sobstvennosti #1547.
  66. Son, D.V., Bakhtybayeva, A.S., & Bakhtybayev, N.B. (2013). Kompyuternaya programma dlya EVM (“KMS-III” kompleks modelirovaniya smeshcheniy – shakhtnyy). Prava na obyekt intellektualnoy sobstvennosti #516.
  67. Valiev, N.G., Berkovich, V.Kh., Propp, V.D., & Kokarev, K.V. (2018). Problemy otrabotki predokhranitelnykh tselikov pri ekspluatatsii rudnykh mestorozhdeniy. Gornyy Zhurnal, 2, 4-9. https://doi.org/10.21440/0536-1028-2018-2-4-9
  68. Bektybayeva, M., Mendybaev, N., Bigeldiyev, A., Basu, S., Abetov, A., Temirkhassov, A., & Yermukhanbet, A. (2021). Workflow of petrophysical analysis performed at mine in Karaganda Coal Basin. Petroleum Technology Conference, D012S002R001. https://doi.org/10.2118/206627-MS
  69. Rylnikova, M.V., & Mitishova, N.A. (2021). Technological aspects of ensuring fire and explosion safety in the underground development of pyrite ore deposits. Engineering Journal of Satbayev University, 143(4), 10-15. https://doi.org/10.51301/vest.su.2021.i4.02
  70. Ivakhnenko, O., Aimukhan, A., Kenshimova, A., Mullagaliyev, F., Akbarov, E., Mullagaliyeva, L., & Almukhametov, A. (2017). Advances in coalbed methane reservoirs integrated characterization and hydraulic fracturing for improved gas recovery in Karaganda Coal Basin, Kazakhstan. Energy Procedia, 125, 477-485. https://doi.org/10.1016/j.egypro.2017.08.161
  71. Kenetayeva, A.A., Usupayev, S.E., Kryazheva, T.V., & Rabatuly, M. (2021). Demethanization of coal seams in the Karaganda basin. IOP Conference Series: Earth and Environmental Science, 677(4), 042118. https://doi.org/10.1088/1755-1315/677/4/042118
  72. Kenetayeva, A.A., Kenetayeva, Zh.K., Tokusheva, Zh.T., & Rabatuly, M. (2019). Methane content of coal seams of Karaganda basin. IOP Conference Series: Materials Science and Engineering, 516, 012020.https://doi.org/10.1088/1757-899X/516/1/012020
  73. Usenbekov, M.S., Izabek, T.K., Kolchin, A.I., & Zhumabekova, A.E. (2022). Dynamics of methane release during mining operations in zones of geological disturbances. Mining Information and Analytical Bulletin, 12, 141-151.https://doi.org/10.25018/0236_1493_2022_12_0_141
  74. Лицензия Creative Commons