Purification of surface water by using the corona discharge method
Askar Abdykadyrov1, Seidulla Abdullayev1, Yerlan Tashtay1, Kanat Zhunussov1, Sunggat Marxuly1
1Satbayev University, Almaty, Kazakhstan
Min. miner. depos. 2024, 18(1):125-137
https://doi.org/10.33271/mining18.01.125
Full text (PDF)
      ABSTRACT
      Purpose.The primary objective of this research is to develop a technology for achieving water quality at the level of Maximum Permissible Concentrations (MPC) required by sanitary regulations and norms.
      Methods. To meet these regulatory requirements, experimental studies were conducted to analyze the chemical and microbiological composition of water, focusing on parameters such as the total microbial count (quantity/ml), coliform bacteria (quantity/ml), coliphages (quantity/100 ml), clostridia (cl/20 ml), and other harmful substances. The research also examined water disinfection processes depending on the autumn and winter seasons of the year.
      Findings. To assess the device’s effectiveness, the research determined the optimal ozone concentration and contact time in the disinfection chamber. The findings indicate that 0.6 grams per hour (G = 0.6 g/hour) of ozone (O3) per cubic meter of surface water is sufficient for the removal of harmful microbiological substances.
      Originality. The primary innovation in this research lies in the establishment of parameters for an ozone generator utilizing a novel corona discharge method. The study introduces both theoretical frameworks and practical methodologies for effectively disinfecting surface waters using this innovative technique.
      Practical implications.This case study offers insights that can be applied and replicated in regions facing similar water quality challenges.
      Keywords: corona discharge, ozone, primary water, reservoir, ozonator, ozonated water
      REFERENCES
- Northey, S.A., Mudd, G.M., Werner, T.T., Haque, N., & Yellishetty, M. (2019). Sustainable water management and improved corporate reporting in mining. Water Resources and Industry, 21, 100104. https://doi.org/10.1016/j.wri.2018.100104
- Yang, Y., Yu, H., Su, M., Chen, Q., Wen, J., & Hu, Y. (2024). Urban water resources accounting based on industrial interaction perspective: Data preparation, accounting framework, and case study. Journal of Environmental Management, 349, 119532. https://doi.org/10.1016/j.jenvman.2023.119532
- AbdolMalki, M.J., Salari, M., & AbdolMalki, S. (2024). Investigating environmental sustainability indicators with an emphasis on mines. Journal of Environmental Science Studies, 8(4), 7264-7272.
- Zhang, C., Wang, F., & Bai, Q. (2021). Underground space utilization of coalmines in China: A review of underground water reservoir construction. Tunnelling and Underground Space Technology, 107, 103657. https://doi.org/10.1016/j.tust.2020.103657
- Atakhanova, Z., Meirambayeva, M., & Baigaliyeva, M. (2024). Mine water use in Kazakhstan: Data issues, risks, and regulations. Sustainability, 16(6), 2456. https://doi.org/10.3390/su16062456
- Ding, W., Jin, W., Cao, S., Zhou, X., Wang, C., Jiang, Q., & Wang, Q. (2019). Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research, 160, 339-349. https://doi.org/10.1016/j.watres.2019.05.014
- Xiang, J.L., Wang, J.J., Wu, Z.J., Xu, B.J., Du, H.S., Chen, Y., & Du, Y. (2024). Efficient wastewater disinfection using a novel microwave discharge electrodeless ultraviolet system with ozone at an ultra-low dose. Journal of Hazardous Materials, 464, 133011. https://doi.org/10.1016/j.jhazmat.2023.133011
- Díaz-Domínguez, E., Romero-Martínez, L., Ibáñez-López, M.E., Acevedo-Merino, A., & García-Morales, J.L. (2024). Evaluation of ozone treatment for bacterial disinfection of ballast water. Journal of Environmental Chemical Engineering, 12(1), 111656. https://doi.org/10.1016/j.jece.2023.111656
- Epelle, E.I., Macfarlane, A., Cusack, M., Burns, A., Okolie, J.A., Mackay, W., & Yaseen, M. (2023). Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 454, 140188. https://doi.org/10.1016/j.cej.2022.140188
- Tripathi, S., & Hussain, T. (2022). Water and wastewater treatment through ozone-based technologies. Development in Wastewater Treatment Research and Processes, 139-172. https://doi.org/10.1016/B978-0-323-85583-9.00015-6
- Abdykadyrov, A.A., Korovkin, N.V., Tashtai, E.T., Syrgabaev, I., Mamadiyarov, M.M., & Sunggat, M. (2021). Research of the process of disinfection and purification of drinking water using ETRO-02 plant based on high-frequency corona discharge. Radio Electronics, Electrical and Power Engineering, 1-4. https://doi.org/10.1109/reepe51337.2021.9388046
- Chee, F.P., Zainuddin, N.S., Ha, H.L., & Dayou, J. (2020). Analysis and characterization of enhanced kinetic reaction on ozone generation using negative corona discharge. Journal of Physics Communications, 4(7), 075022. https://doi.org/10.1088/2399-6528/ab9fac
- Yu, Y., Wang, H., Li, H., Tao, P., & Sun, T. (2022). Influence of water molecule on active sites of manganese oxide-based catalysts for ozone decomposition. Chemosphere, 298, 134187. https://doi.org/10.1016/j.chemosphere.2022.134187
- Bhoje, R., & Ghosh, A.K. (2024). Overview of water treatment technologies for preparation of drinking water. Sustainable Technologies for Remediation of Emerging Pollutants from Aqueous Environment, 431-453. https://doi.org/10.1016/B978-0-443-18618-9.00006-1
- Lutukurthi, D.K., & Dutta, S. (2024). Recent advances on the technologies for the disinfection of drinking water. Advances in Drinking Water Purification, 271-293. https://doi.org/10.1016/B978-0-323-91733-9.00012-X
- Han, X., Zou, X., Luo, J., Wu, J., & Deng, B. (2024). Residence time and the concentration of microorganism in the ozone contactor: A CFD simulation on chamber deflectors. Environmental Science and Pollution Research, 1-14. https://doi.org/10.1007/s11356-024-31909-x
- Abdykadyrov, A., Marxuly, S., Baikenzheyeva, A., Bakyt, G., Abdullayev, S., & Kuttybayeva, A.E. (2023). Research of the process of ozonation and sorption filtration of natural and anthropogenicly pollated waters. Journal of Environmental Management & Tourism, 14(3), 811-822. https://doi.org/10.14505/jemt.v14.3(67).20
- Lin, Q., Dong, F., Miao, Y., Li, C., & Fei, W. (2020). Removal of disinfection by‐products and their precursors during drinking water treatment processes. Water Environment Research, 92(5), 698-705. https://doi.org/10.1002/wer.1263
- Zhao, S., Chen, Z., Zhai, X., Li, A., & Shen, J. (2010). Comparison of chlorogenerated disinfection byproduct formation from sequential use ozone and monochloramine with alternative disinfection. Environmental Science and Computer Engineering. https://doi.org/10.1109/cesce.2010.231
- Wu, S., Lu, C., Ma, B., Liu, R., Hu, C., Ulbricht, M., & Qu, J. (2022). Long-term direct ultrafiltration without chemical cleaning for purification of micro-polluted water in rural regions: Feasibility and application prospects. Chemical Engineering Journal, 443, 136531. https://doi.org/10.1016/j.cej.2022.136531
- Lei, R., Shi, Y., Wang, X., Tao, X., Zhai, H., & Chen, X. (2021). Water purification system based on self-powered ozone production. Nano Energy, 88, 106230. https://doi.org/10.1016/j.nanoen.2021.106230
- Gere, D., Róka, E., Erdélyi, N., Bufa-Dőrr, Z., Záray, G., & Vargha, M. (2022). Disinfection of therapeutic water – balancing risks against benefits: Case study of Hungarian therapeutic baths on the effects of technological steps and disinfection on therapeutic waters. Journal of Water and Health, 20(1), 92-102. https://doi.org/10.2166/wh.2021.169
- Vaju, D., Festila, C., & Vlad, G. (2008). Drinking water quality improvement by physical methods, using middle-frequency inverters. Automation, Quality and Testing, Robotics, 3, 454-459. https://doi.org/10.1109/AQTR.2008.4588963
- Wang, C.P., & Liao, J.Y. (2023). Effect of UV-C LED arrangement on the sterilization of Escherichia coli in planar water disinfection reactors. Journal of Water Process Engineering, 56, 104399. https://doi.org/10.1016/j.jwpe.2023.104399
- Dorevitch, S., Anderson, K., Shrestha, A., Wright, D., Odhiambo, A., Oremo, J., & Heimler, I. (2020). Solar powered microplasma-generated ozone: Assessment of a novel point-of-use drinking water treatment method. International Journal of Environmental Research and Public Health, 17(6), 1858. ijerph17061858
- Khan, M.S.I., Lee, S.H., & Kim, Y.J. (2020). A mechanistic and kinetic study of diazinone degradation under the influence of microplasma discharge water. Journal of Water Process Engineering, 36, 101310. https://doi.org/10.1016/j.jwpe.2020.101310
- Yang, L., Chen, Z., Liu, X., Zhai, X., Shen, J., & Han, Y. (2009). Removal of dimethylamine by ozone combined with hydrogen peroxide (O3H2O2). International Conference on Energy and Environment Technology. https://doi.org/10.1109/ICEET.2009.405
- Xu, D., Bai, L., Tang, X., Niu, D., Luo, X., Zhu, X., & Liang, H. (2019). A comparison study of sand filtration and ultrafiltration in drinking water treatment: Removal of organic foulants and disinfection by-product formation. Science of the Total Environment, 691, 322-331. https://doi.org/10.1016/j.scitotenv.2019.07.071
- Györök, G., & Shvets, O. (2022). Adaptive ozone generator with embedded microcontroller. Intelligent Engineering Systems, 000155-000158. https://doi.org/10.1109/INES56734.2022.9922612
- Park, S., Kim, J., Lee, H., Han, D., Park, S., Kim, S. B., & Choe, W. (2021). Nonheating ozone suppression in pulsed air discharges: Role of pulse duration and repetition rate. Journal of Physics D: Applied Physics, 54(39), 394003. https://doi.org/10.1088/1361-6463/ac113b
- Jodzis, S., & Baran, K. (2022). The influence of gas temperature on ozone generation and decomposition in ozone generator. How is ozone decomposed? Vacuum, 195, 110647. https://doi.org/10.1016/j.vacuum.2021.110647
- Forés, E., Mejías-Molina, C., Ramos, A., Itarte, M., Hundesa, A., Rusiñol, M., & Girones, R. (2023). Evaluation of pathogen disinfection efficiency of electrochemical advanced oxidation to become a sustainable technology for water reuse. Chemosphere, 313, 137393. https://doi.org/10.1016/j.chemosphere.2022.137393
- Babayev, A., Tasheva, U., Allenova, I., & Sanbetova, A.T. (2023). Application of ozone electrodispersion technology for disinfection of water. Earth and Environmental Science, 1142(1), 012002. https://doi.org/10.1088/1755-1315/1142/1/012002
- Mazurek, B., Kogut, K., Wieczorek, K., Skaradzińska, A., Skaradziński, G., Ochocka, M., & Noras, M.A. (2023). Virus elimination using high-voltage pulses in aqueous solutions. IEEE Transactions on Plasma Science, 51(3), 762-770. https://doi.org/10.1109/TPS.2023.3244899
- Joseph, A., & Vijayanandan, A. (2023). Review on support materials used for immobilization of nano-photocatalysts for water treatment applications. Inorganica Chimica Acta, 545, 121284. https://doi.org/10.1016/j.ica.2022.121284
- Xingbin, S., Yifeng, J., & Fuyi, C. (2009). Enhanced removal of Chironomus kiiensis larvae in conventional water treatment process by pre-oxidation. Journal of Water Supply: Research and Technology-AQUA, 58(7), 470-475. https://doi.org/10.2166/aqua.2009.131
- Yuan, H.G., Zhang, R.J., Xu, Y.Q., Dang, Z., Hu, Y., Wang, Q.B., & Zhang, Z.J. (2023). Effects of multi-frequency ultrasound on inactivating Chironomus kiiensis eggs: Evidence from a case study in drinking water treatment plant. Journal of Water Process Engineering, 55, 104111. https://doi.org/10.1016/j.jwpe.2023.104111
- Mitsugi, F., Nagatomo, T., Takigawa, K., Sakai, T., Ikegami, T., Nagahama, K., & Teii, S. (2014). Properties of soil treated with ozone generated by surface discharge. IEEE Transactions on plasma science, 42(12), 3706-3711. https://doi.org/10.1109/TPS.2014.2350533
- Karaca, E., Gulec, A., Tenderis, B., Ozkaptan, E.B., Titrek, M.A., Asan, O.N., & Oksuz, L. (2021). Ozone production by dielectric barrier discharge plasma for COVID and microbial inactivation. IEEE International Conference on Plasma Science, 1-1. https://doi.org/10.1109/ICOPS36761.2021.9588547
- Olii, M.R., Hambali, R., Djafar, L., Ichsan, I., & Saliko, M. (2024). Innovative porous mortar filters: wastewater purification for clean water. Water Science & Technology, wst2024073. https://doi.org/10.2166/wst.2024.073
- Noor, A., Kutty, S.R.M., Isa, M.H., Farooqi, I.H., Affam, A.C., Birniwa, A.H., & Jagaba, A.H. (2023). Treatment innovation using biological methods in combination with physical treatment methods. The Treatment of Pharmaceutical Wastewater, 2023, 217-245. https://doi.org/10.1016/B978-0-323-99160-5.00010-2
- Syeed, M.M., Hossain, M.S., Karim, M.R., Uddin, M.F., Hasan, M., & Khan, R.H. (2023). Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environmental and Sustainability Indicators, 18, 100247. https://doi.org/10.1016/j.indic.2023.100247
- Kumar, S. (2023). Smart and innovative nanotechnology applications for water purification. Hybrid Advances, 3, 100044. https://doi.org/10.1016/j.hybadv.2023.100044
- Hand, S., & Cusick, R.D. (2021). Electrochemical disinfection in water and wastewater treatment: identifying impacts of water quality and operating conditions on performance. Environmental Science & Technology, 55(6), 3470-3482. https://doi.org/10.1021/acs.est.0c06254
- Eguchi, K., Fujita, R., Wang, D., Tomita, K., & Namihira, T. (2019). Laser Thomson scattering diagnostics for streamer discharge in HE gas. IEEE Pulsed Power & Plasma Science, 1-4. https://doi.org/10.1109/PPPS34859.2019.9009628
- Pichel, N., Vivar, M., & Fuentes, M. (2018). Optimization study of a photovoltaic-photochemical hybrid system (SOLWAT) for meeting the needs of electricity and clean water. Photovoltaic Energy Conversion, 1222-1224. https://doi.org/10.1109/PVSC.2018.8547320
- Puviyarasi, B., Srividya, K., Madhuprabha, S., Thomas, S., Devi, E.R., & Sindhusha, K. (2021). Inline electrolytic disinfected water supply system using programmable logic controller. Computing and Communications Technologies, 423-427. https://doi.org/10.1109/ICCCT53315.2021.9711905
- Momai, M.F., Ookawara, S., Alalm, M.G., & El-Etriby, H.K. (2020). Effective photocatalytic disinfection of drinking water using TiO2 and WO3 coated on fixed plates. Advances in Science and Engineering Technology, 1-7. https://doi.org/10.1109/ASET48392.2020.9118231
- Skiba, M., Pivovarov, A., Sorochina, K., & Vorobyova, V. (2018). One-pot synthesis of silver nanoparticles and composite materials for drinking water disinfection. IEEE 8th International Conference Nanomaterials: Application & Properties, 1-4. https://doi.org/10.1109/NAP.2018.8915184
- Latifa, S., Fodil, B.M., El Houda, Z.N., Kamel, N., Said, N., Amar, T., & Benaissa, K.Y. (2022). Experimental analysis of surface disinfection system in hospitals using dielectric barrier discharge ozone generator. Advanced Electrical Engineering, 1-5.
- Huang, Y., Kou, Y., Zheng, C., Xu, Y., Liu, Z., & Yan, K. (2016). Escherichia coli inactivation in water using pulsed discharge. IEEE Transactions on Plasma Science, 44(6), 938-943. https://doi.org/10.1109/TPS.2016.2559802
- Izdebski, T., Dors, M., & Mizeraczyk, J. (2011). River water remediation using electrohydraulic discharges or ozonation. IEEE Transactions on Plasma Science, 39(3), 953-959. https://doi.org/10.1109/TPS.2010.2098889
- Abdykadyrov, A., Marxuly, S., Kuttybayeva, A., Almuratova, N., Yermekbayev, M, Ibekeyev, S, Yerzhan, A., & Bagdollauly, Y. (2023). Study of the process of destruction of harmful microorganisms in water. Water, 15(3), 503. https://doi.org/10.3390/w15030503
- Kogan, B.F. (1961). Solubility reference. Book 1. Moscow, Russian Federation: Mir.
- Masschelein, W.J. (2006). Processusunitaires du traitement de L’eau potable. Liège, Belgium: Épuisé.
- Horvath, M.L., & Bilitrki, L.H. (1985). Ozone. Budapest, Hungry: Akademia Kiado.
- Abdykadyrov, A., Marxuly, S., Mamadiyarov, M., Smailov, N., Zhunusov, K., Kuttybaeva, A., & Orazbekov, A. (2023). Investigation of the efficiency of the ozonator in the process of water purification based on the corona discharge. Journal of Ecological Engineering, 24(2), 140-151. https://doi.org/10.12911/22998993/156610
- Ding, W., Jin, W., Cao, S., Zhou, X., Wang, C., Jiang, Q., & Wang, Q. (2019). Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research, 160, 339-349. https://doi.org/10.1016/j.watres.2019.05.014
- Shi, Q., Chen, Z., Liu, H., Lu, Y., Li, K., Shi, Y., & Hu, H.Y. (2021). Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. Science of The Total Environment, 758, 14364. https://doi.org/10.1016/j.scitotenv.2020.143641