Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Investigation of heavy metal concentrations in the Kelmend tailings landfill and ecological assessment of pollution

Flurije Sheremeti-Kabashi1, Festim Kutllovci1, Besarta Mangjolli1, Alban Hasani1

1University “Isa Boletini”, Mitrovica, Kosovo


Min. miner. depos. 2024, 18(1):110-118


https://doi.org/10.33271/mining18.01.110

Full text (PDF)


      ABSTRACT

      Purpose.The research purpose is to determine the heavy metal concentrations in the Kelmend tailings landfill, an active landfill of Pb-Zn flotation waste from the Trepça mine located in the Stan Tërg district in northern Kosovo, as well as to assess the soil pollution level.

      Methods. The data is based on two sampling profiles: profile P1 in the south-west of the tailings landfill with 7 samples and profile P2 in the north-east of the tailings landfill with 5 samples within the framework of the project “Environmental geochemical research of the tailings landfill in Kelmend”, funded by the Ministry of Education, Science, Technology and Innovation of the Republic of Kosovo. Each sample was taken according to standards and was analyzed to determine the Pb, Zn, and Mn concentration, as well as pH value. Chemical analyses were performed in the ECCAT-certified laboratory in Tirana, Albania, using atomic absorption spectroscopy (AAS) equipment.

      Findings. The average concentrations of Pb, Zn and Mn in profile P1 were 1374.27, 564.7 and 1145.71 mg/kg, while in profile P2 – 796.68, 4510.0 and 14396.2 mg/kg. This significantly exceeds the limits of soil contamination according to Administrative Instruction (GRK), as well as the permissible limits for heavy metal content in soil by WHO and EU Directives. The studied samples clearly show a change in pH values in both profiles. In profile P1 the values are lower with an ave-rage value of 3.08 than in profile P2 with an average value of 6.48. This explains the importance and influence of pH on the mobility of heavy metals, especially in soil with acidic pH.

      Originality. The originality of the research consists of taking 12 samples from two profiles in the Kelmend tailings landfill, chemical analyses to determine heavy metal concentrations in the ECCAT-certified laboratory in Tirana, Albania, and followed by the statistical interpretation of the results.

      Practical implications.The tailings landfill in Kelmend is located near residential areas and is part of the amazing landscape of Shala of Bajgora. On a regional and local scale, the anthropogenic impact from this landfill remains may have already penetrated deeply into the natural material of the surrounding environment. This work highlights the importance of understan-ding the distribution and risk of toxic metals in sensitive ecosystems.

      Keywords: tailings landfill in Kelmend, Pb-Zn mine, heavy metals, pollution


      REFERENCES

  1. Mining strategy of the Republic of Kosovo, Prishtina, Kosovo. (2012). Prishtina, Kosovo: Ministry of Economic Development.
  2. Kelmendi, Sh. (2021). Flotimi i xeherorëve të Pb-Zn. Prishtinë, Kosovë, 484 p.
  3. Hyseni, A., Muzaqi, E., Durmishaj, B., & Hyseni, S. (2022). Metal losses at the Trepça concentrator during the enrichment process. Mining of Mineral Deposits, 16(4), 132-137. https://doi.org/10.33271/mining16.04.132
  4. Istrefi, F. (2011). Shala e Bajgorës. Mitrovicë, Kosovë.
  5. Kadriu, S., Sadiku, M., Kelmendi, M., Mulliqi, I., Aliu, M., & Hyseni, A. (2019). Scale of pollutions with heavy metals in water and sediment of river Ibër from landfill in Kelmend, Kosovo. Mining Science, 26, 147-15. https://doi.org/10.37190/msc192610
  6. Hyseni, S., & Durmishaj, B. (2010). Elaborati gjeologjik në deponinë e Kelmendit. Miniera e Stan Tërgut. Mitrovicë, Kosovë.
  7. Sadriu, E. (2020). Hulumtimi i ndotjes së tokës me metale të rënda në fshatrat Rahovë, Zhazhë dhe Kelmend. Punim Masteri. Mitrovicë, Kosovë: UIBM.
  8. Zeqiri, R., Zeqiri, I., Kadriu, N.S., & Aliu, M. (2015). The pollution of river Ibër with heavy metals from landfill of Kelmend. International Journal of Engineering Research, 4(3), 99-101. https://doi.org/10.17950/ijer/v4s3/302
  9. Bao, Z., Al, T., Bain, J., Shrimpton, K.H., Finfrock, Z.Y., Ptacek, J.C., & Blowes, W.D. (2022). Sphalerite weathering and controls on Zn and Cd migration in mine waste rocks: An integrated study from the molecular scale to the field scale. Geochemica at Cosmochemica Acta, 318, 1-18. https://doi.org/10.1016/j.gca.2021.11.007
  10. Acoto, R., & Anning, K.A. (2021). Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environmental Advances, 3, 100028. https://doi.org/10.1016/j.envadv.2020.100028
  11. Steingräber, F.L., Ludolphy, C., Metz, J., Kierdorf, H., & Kierdorf. U. (2022). Uptake of lead and zinc from soil by blackberry plants (Rubus fruticosus L. agg.) and translocation from roots to leaves. Environmental Advances, 9, 100313. https://doi.org/10.1016/j.envadv.2022.100313
  12. Li, J.W., Yin, X.Zh., Yue, B., Gao, P.T., & Chang, H.G. (2020). Distribution and risk assessment of some heavy metal elements in the contaminated soil from Baiyin city, Gansu province. Earth and Environmental Science, 568, 012044. https://doi.org/10.1088/1755-1315/568/1/012044
  13. Kudjelka, A., Weinke, H.H., Weber, L., & Punz, W. (2002). Pflanzenverfügbarkeit und mobilität von schwermetallen in blei-zink-bergwerkshalden des Grazer Paläozoikums. Joannea Geologie und Paläontologie, 4, 91-110.
  14. Andresen, H. (2011). Comparative studies on the sediment quality of the Moskva, the Oka and the Neckar River using the examples of heavy metals and ortho-phosphate. Dissertation. Heidelberg, German. https://doi.org/10.11588/heidok.00013179
  15. EPA Method 3050B. (1996). Acid digestion of sediments, sludges and soils.
  16. S SH ISO 10390. (2005). Soil quality. Determination of pH.
  17. Administrative instruction of GRK No. 11/2018 on limited values of emissions of polluted materials into soil. (2018). Prishtina, Kosovo: Government of the Republic of Kosovo.
  18. EU-Directives (1986). Limit values for concentrations of heavy metals in soil. Annex IA.
  19. Permissible limits of heavy metals in soil and plants. (1996). Geneva, Switzerland: World Health Organization.
  20. Chiroma, T.M., Ebewele, R.O, & Hymore, F.K. (2014). Comparative assessement of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. International Refereed Journal of Engineering and Science, 3(2), 1-9.
  21. Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502 https://doi.org/10.1016/j.jhazmat.2019.121502
  22. Albarède, F. (2009). Geochemistry. An Introduction. Cambridge, United Kingdom: Cambridge University Press, 342 p. https://doi.org/10.1017/CBO9780511807435
  23. Matheß, G. (1994). Di beschaffenheit des grundwassers. Berlin, Germany: Gebrüder Borntraeger Berlin Stuttgart, 499 p.
  24. Freudenschuß, A., Obersteiner, E., & Schwarz S. (2007). Schwermetalle in oberböden kartenband-auswertungen aus dem österreichweiten boden informations system Boris. Wien, Austria: Umweltbundesamt, 51 s.
  25. Emmanuel, K. (2007). Mobilisierbarkeit von schwermetallen in frisch geschütteten böden. Diplomarbeit. Züric, Switzerland: ETH Zürich, 86 p.
  26. Zehl, K. (2005). Schwermetalle in sedimenten und böden unter besonderer berücksichtigung der mobilität und deren beeinflussung durch sauerstoff. Dissertation. Jena, Germany, 136 p.
  27. Nasemann, D. (2018) Aluminium und Schwermetallmobilität in landwirtschaftlich beeinflussten Grundwasserleitern des Landes NRW in Abhängigkeit von Nitrifikationsprozessen. Masterarbeit. Bochum, Germany, 102 p.
  28. Michalke, B., & Fernsebner, K. (2014). New insights into manganese toxicity and speciation. Journal of Trace Elements in Medicine and Biology, 28(2), 106-116. https://doi.org/10.1016/j.jtemb.2013.08.005
  29. Block, J., Greve, M., Schröck, H.W., & Zum Hingste, F.W. (2016). Mangantoxizitat bei douglasie (Pseudotsuga menziesii [Mirb.] Franco). Stand der kenntnis und empfehlungen zur begrenzung der schäden. Trippstadt, Germany: Forschungsanstalt Waldökologie Forstwirtschaft Rheinland-Pfalz, Mitt, 132-140.
  30. Rani, A.J., & Kumar, A. (2018). Manganese: Affecting our environment (water, soil and vegetables). International Journal for Innovative Research in Science & Technology, 4(8), 1-10.
  31. Environmental Health Criteria 17. Manganese. (1981). Geneva, Switzerland: World Health Organization.
  32. Afolabi, O.O., Wali, E., Asomaku, S.O., Olushola, I.T., Ogbuehi, N.C., Bosco-Abiahu, L. C., & Emelu, V.O. (2023). Ecotoxicological and health risk assessment of toxic metals and metalloids burdened soil due to anthropogenic influence. Environmental Chemistry and Ecotoxicology, 5, 29-38. https://doi.org/10.1016/j.enceco.2022.12.002
  33. Tian, Y., Li, J., Jia, Sh., & Zhao, W. (2021). Co-release potential and human health risk of heavy metals from galvanized steel pipe scales under stagnation conditions of drinking water. Chemosphere, 267, 129270. https://doi.org/10.1016/j.chemosphere.2020.129270
  34. Yang, F., Wang, B., Shi, Z., Li, L., Li, Y., Mao, Z., & Wu, Y. (2021). Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environmental Pollutants and Bioavailability, 33(1), 55-65. https://doi.org/10.1080/26395940.2021.1916407
  35. Ahmad, W., Alharthy, R.D., Zubair M., Ahmed, M., Hameed, A., & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Nature, Scientific Reports, 11, 17006. https://doi.org/10.1038/s41598-021-94616-4
  36. Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 397-409. https://doi.org/10.4067/S0718-95162015005000036
  37. Mitra, S., Chakraborty, A.J., Tareq, A.M., Emran, T.B., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
  38. Timpano, A.J., Taylor, Z., & Jones, J.W. (2023). Contaminated interstitial sediment is a reservoir of trace elements with exposure potential for freshwater mussels. Environmental Advances, 12, 100357. https://doi.org/10.1016/j.envadv.2023.100357
  39. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.jksus.2022.101865
  40. Krzebietke, S., Daszykowski, M., Czarnik-Matusewicz, H., Stanimirova, I., Pieszczek, L., Sienkiewicz, S., & Wierzbowska, J. (2023). Monitoring the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe in cultivated Haplic Luvisol soils using near-infrared reflectance spectroscopy and chemometrics. Talanta, 251, 123749. https://doi.org/10.1016/j.talanta.2022.123749
  41. Chen, H., Zhang, J., Tang, L., Su, M., Tian, D., Zhang, L., Li, Zh., Hu, Sh. (2019). Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International, 127, 395-401. https://doi.org/10.1016/j.envint.2019.03.068.
  42. Лицензия Creative Commons