Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Metallogenic model of the Amensif Zn-Pb-Cu-Ag±Au-Bi carbonate replacement deposit (Western High Atlas, Morocco): New litho-structural and mineralogical data

Said Ilmen1, Abdelkhalek Alansari2, Abdel-Ali Kharis1, Zaineb Hajjar3, Bouchra Baidada4, Amine Bajddi5, Lhou Maacha5

1Polydisciplinary Faculty of Ouarzazate, Ibnou Zohr University, Ouarzazate, Morocco

2Cadi Ayyad University, Marrakech, Morocco

3Mohammed V University in Rabat, Rabat, Morocco

4Moulay Slimane University, Beni-Mellal, Morocco

5Managem Group, Casablanca, Morocco, Qena, Egypt


Min. miner. depos. 2024, 18(1):99-109


https://doi.org/10.33271/mining18.01.099

Full text (PDF)


      ABSTRACT

      Purpose.In this paper, we discuss the genetic model and emphasize many pending issues on the carbonate replacement textures of the Amensif Zn-Pb-Cu-Ag±Au-Bi deposit (the Western High Atlas, Morocco), the source of metal and the possible contribution of the Azegour granite to this ore genesis.

      Methods. This study is based on geological mapping, drill core and petrography analysis in combination with ICP-AES, XRD, and SEM data.

      Findings. The detailed mineralogy consists mainly of sulfides and sulfosalts. The main ore minerals include arsenopyrite, pyrite, sphalerite, chalcopyrite, galena and bismuthinite. Mineral inclusions related to isomorphic sulfosalts are found in galena and/or chalcopyrite. They include matildite, galenobismutite, pavonite, cosalite, schirmerite, krupkaite, ramdohrite, wittichenite, emplectite, luzonite, gustavite, hedleyite, krennerite, wittite, freibergite, tetrahedrite, tennantite and native bismuth. The supergene minerals are anglesite, covellite, malachite, azurite and goethite. In addition, specific replacements are observed between dolomites and sulfides, indicating an interaction between hydrothermal fluid and host rocks. Four ore stages have been identified based on the relationship between mineral phases and ore-forming conditions. The results of this study indicate that Ag and Au precipitation is controlled by the Bi-Te-Pb-S system, while enrichment in Bi, Te and Se sulfosalts and Bi-telluride indicates a magmatic source of the ore-forming fluid.

      Originality. The study delves into the genetic model of the Amensif Zn-Pb-Cu-Ag±Au-Bi deposit in the Western High Atlas, Moroc-co, with a focus on carbonate replacement textures, while also exploring its classification as either a carbonate replacement deposit or a skarn deposit.

      Practical implications.Mineral textures are indicators of the replacement process in the Amensif Zn-Pb-Cu-Bi-Ag±Au carbonate replacement deposit (the Western High Atlas, Morocco). The results obtained from this research paper can be used as a powerful tool in mineral exploration of the Western High Atlas.

      Keywords: Amensif, High Atlas, Morocco, sulfides, genetic model, carbonate replacement deposit


      REFERENCES

  1. Meinert, L.D., Dipple, G.M., & Nicolescu, S. (2005). World skarn deposits. Economic Geology 100th Anniversary Volume, 299-336. https://doi.org/10.5382/AV100.11
  2. Meinert, L.D. (1992). Skarns and skarn deposits. Geoscience Canada, 19(4), 145-162.
  3. Einaudi, M.T., Meinert, L.D., & Newberry R.J. (1981). Skarn deposits. Economic Geology, 75, 317-391. https://doi.org/10.5382/AV75.11
  4. Einaudi, M.T., & Burt, D.M. (1982). Introduction – terminology, classification, and composition of skarn deposits. Economic Geology, 77, 745-754. https://doi.org/10.2113/gsecongeo.77.4.745
  5. Cox, D.P. (1963). Descriptive model of polymetallic veins. Mineral Deposit Models, 125.
  6. Vikre, P.G. (1998). Intrusion-related, polymetallic carbonate replacement deposits in the Eureka district, Eureka County, Nevada. Bulletin of Nevada Bureau of Mines and Geology, 110, 1-52.
  7. Voudouris, P., Melfos, V., Spry, P.G., Bonsall, T.A., Tarkian M., & Solomos, C. (2008). Carbonate replacement Pb-Zn-Ag-Au mineralization in the Kamariza area, Lavrion, Greece: Mineralogy and thermochemical conditions of formation. Mineralogy and Petrology, 94, 85-106. https://doi.org/10.1007/s00710-008-0007-4
  8. Alansari, A., Bajddi, A., & Zouhair, M. (2009). Mise en évidence d’une évolution verticale dans la minéralogie et la typologie des minéralisations à Cu-Zn-Pb-Ag-Ba Tighardine: Apports à l’exploration minière dans le Haut Atlas occidental (Maroc). Notes et Mémoires du Service Géologique du Maroc, 530, 31-44.
  9. Ilmen, S., Alansari, A., Baidada, B, Maacha, L, & Bajddi, A. (2016). Minerals of the Ag-Bi-Cu-Pb-S system from the Amensif carbonate replacement deposit (Western High Atlas, Morocco). Journal of Geochemical Exploration, 161, 85-97. https://doi.org/10.1016/j.gexplo.2015.11.008
  10. Permingeat, F. (1957). Le gisement de molybdène, tungstène et cuivre d’Azegour (Haut-Atlas): Étude pétrographique et métallogénique. Notes et Mémoires du Service Géologique du Maroc, 141, 1-5.
  11. Bouabdellah, M. (1988). Etude pétrographique et métallogénique du district polymétallique à Pb-Zn-Cu-Ba-Fe et Sn d’Assif El Mal-Bouzouga (Haut-Atlas de Marrakech, Maroc). Unpublished PhD Thesis. Marrakech, Morocco: Cadi Ayyad University.
  12. Zerhouni, Y. (1988). Contribution à l’étude géologique de la région d’Azegour et des minéralisations en Mo, W, Cu et Fe. Haut-Atlas de Marrakech-Maroc. Unpublished PhD Thesis. Marrakech, Morocco: Cadi Ayyad University.
  13. Badra, L. (1993). Les minéralisations polymétalliques (Pb-Zn-Cu, Ba) du Haut-Atlas Occidental marocain et de ses confins dans leurs cadre géodynamique. Unpublished PhD Thesis. Orléans, France: University of Orléans.
  14. Ilmen, S. (2011). Contribution à l’Étude Géologique du Gîte à Cu, Zn, Pb et Ag ± Au d’Amensif (Région d’Azegour-Haut Atlas Occidental). Unpublished MSc Thesis. Marrakech, Morocco: Cadi Ayyad University.
  15. Baidada, B. (2012). Etude gîtologique et minéralogique de la zone de cisaillement aurifère de Talat n’Imjjad (Région d’Amezmiz, Haut Atlas occidental, Maroc). Unpublished MSc Thesis. Marrakech, Morocco: Cadi Ayyad University.
  16. Ilmen, S. (2016). Contribution à l’Etude des Minéralisations à Métaux de Base (Pb, Zn, Cu) et Métaux Précieux (Au, Ag) du Haut Atlas occidental: Cas du gisement d’Amensif et du gîte de Talat n’Imjjad (District minier d’Azegour, Maroc). Unpublished PhD Thesis. Marrakech, Morocco: Cadi Ayyad University.
  17. Gaouzi, A., Chauvet, A., Barbanson, L., Badra, L., Touray, J.C., Oukarou, S., & El Wartiti, M. (2001). Mise en place syntectonique des minéralisations cuprifères du gite d’Ifri (district du Haut Seksaoua, Haut Atlas occidental, Maroc). Comptes Rendus de l’Academie des Sciences – (Serie IIa) Sciences de la Terre et des Planètes, 333(5), 277-284. https://doi.org/10.1016/S1251-8050(01)01631-7
  18. Ilmen, S., Alansari, A., Bajddi, A., & Maacha, L. (2014). Cu-Au vein mineralization related to the Talat n’Imjjad shear zone (western High Atlas, Morocco): Geological setting, ore mineralogy, and geochemical evolution. Arabian Journal of Geosciences, 8, 5039-5056. https://doi.org/10.1007/s12517-014-1503-y
  19. Ilmen, S., Alansari, A., Bajddi, A., En-Naciri, A., & Maacha, L. (2014). Mineralogical and geochemical characteristics of the Amensif Cu, Pb, Zn, (Ag, Au) ore deposit, western High Atlas, Morocco. Journal of Tethys, 2, 118-136.
  20. Ilmen, S., Baidada, B., Hajjar, Z., Alansari, A., Kharis, A., El Arbaoui, A., Bajddi, A., Moussaid, A., Bhilisse, M., El Azmi, M., & El Janati, M. (2022). The Ait Dawd Cu-Ni vein deposit: New mineralogical insights to understand the mineralizing criteria of the western High Atlas district (Morocco). Arabian Journal of Geosciences, 15, 1595. https://doi.org/10.1007/s12517-022-10868-y
  21. Jinari, A., Rddad, L., Mouguina, E.M., & Ouadjou, A. (2023). Origin of the Amensif Zn-Cu (Pb-Ag-Au) distal skarn deposit (Western High Atlas, Morocco): Constraints from C-O-S isotopes. Journal of African Earth Sciences, 199, 104850. https://doi.org/10.1016/j.jafrearsci.2023.104850
  22. Cornée, J.J., Ferrandini, J., Muller, J., & Simon, B. (1987). Le Haut Atlas occidental paléozoïque: un graben cambrien moyen entre deux décrochements dextres N60° E hercyniens (Maroc). Comptes Rendus de l’Acédémie des Sciences, Paris, 305, 499-503.
  23. Ouanaimi, H., & Petit, J.P. (1992). La limite sud de la chaîne hercynienne dans le Haut Atlas marocain: reconstitution d’un saillant non déformé. Bulletin de la Société Géologique de France, 163(1), 6372.
  24. El Archi, A., El Houicha, M., Jouhari, A., & Bouabdelli, M. (2004). Is the Cambrian basin of the Western High Atlas (Morocco) related either to a subduction zone or a major shear zone? Journal of African Earth Sciences, 39(3-5), 311-318. https://doi.org/10.1016/j.jafrearsci.2004.07.037
  25. Bouabdellah, M., Beaudoin, G., Leach, D.L., Grandia, F., & Cardellach, E. (2009). Genesis of the Assif El Mal Zn-Pb (Cu, Ag) vein deposit in extension-related Mesozoic vein system in the High Atlas of Morocco: Structural, mineralogical, and geochemical evidence. Mineralium Deposita, 44, 689-704. https://doi.org/10.1007/s00126-009-0232-8
  26. Dias, R., Hadani, M., Leal Machado, I., Adnane, N, Hendaq, Y., Madih, K., & Matos, C. (2011). Variscan structural evolution of the western High Atlas and the Haouz plain (Morocco). Journal of African Earth Sciences, 61(4), 331-342. https://doi.org/10.1016/j.jafrearsci.2011.07.002
  27. Ouazzani, H., Pouclet, A., Badra, L., & Prost, A.E. (2001). Le volcanisme d’arc du massif ancien de l’ouest du Haut Atlas occidental (Maroc), un témoin de la convergence de la branche occidentale de l’océan panafricain. Bulletin de la Société Géologique de France, 172(5), 587-602. https://doi.org/10.2113/172.5.587
  28. Pouclet, A., Ouazzani, H., & Fekkak, A. (2008). The Cambrian volcano-sedimentary formations of the westernmost High Atlas (Morocco): Their place in the geodynamic evolution of the West African Palaeo-Gondwana northern margin. Geolological Society of London, 297, 303-327. https://doi.org/10.1144/SP297.15
  29. Mrini, Z. (1985). Age et origine des granitoïdes hercyniens du Maroc, apport de la géochronologie et de la géochimie isotopique (Sr, Nd, Pb). Unpublished PhD Thesis. Clermont-Ferrand, France: Clermont-Ferrand University.
  30. Jouhari, A., Ouanaimi, H., Fekkak, A., Ettachfini, E.M., El Archi, A., Aarab, A., & Hadri, M. (2018). Carte géologique du Maroc (1/50000), Feuille Azegour. Notes et Mémoires du Service Géologique du Maroc, 589, 1-7.
  31. Ettachfini, E.M., Fekkak, A., Ouanaimi, H., Jouhari, A., Ezzouhairi H., Ettachfini, M., Hilali, M., & Michard, A. (2018). Carte Géologique du Maroc au 1/50000, Feuille Azegour – Notice explicative. Notes et Mémoires du Service Géologique du Maroc, 589, 1-5.
  32. El Amrani, E.I. (1984). Contribution à l’étude pétrologique, minéral-ogique, métallogénique ET pétrologie structurale des formations de la région d’Azegour Haut-Atlas occidental. PhD Thesis. Nancy, France: University of Nancy I.
  33. Charlot, R., Tisserant, D., & Vidal, P. (1967). Rapport technique et quelques résultats. Comptes Rendus Activités Service de Carte Géologique, Marocco, 126-137.
  34. Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E.C., & Saddiqi, O. (2010). The south-western branch of the Variscan Belt: Evidence from Morocco. Tectonophysics, 492(1-4), 1-24. https://doi.org/10.1016/j.tecto.2010.05.021
  35. Petit, J.P. (1976). La zone de décrochement de Tizi n’Test et son fonctionnement depuis le Carbonifère. Unpublished PhD Thesis. Montpellier, France: Montpellier-2 University.
  36. Lagarde, J.L., & Roddaz, B. (1983). Le massif plutonique de Tichka (Haut Atlas, Maroc): Undiapir syntectonique. Bulletin de la Société Géologique de France, XXV(3), 389-395. https://doi.org/10.2113/gssgfbull.S7-XXV.3.389
  37. Lagarde, J.L. (1987). Les plutons granitiques hercyniens marqueurs de la déformation crustale L’exemple de la Meseta marocaine. Unpublished PhD Thesis. Rennes, France: Rennes I University.
  38. Ilmen, S., Alansari, A., Maacha, L., & Bajddi, A. (2015). Ag-Bi-Te sulphosalt minerals related to the Amensif Cu-Pb-Zn-Ag-(Au) carbonate-replacement deposit (Guedmiwa district, western High Atlas, Morocco). In Mineral Resources in a Sustainable World (p. 1-5). Nancy, France.
  39. Prost, A., Badra, L., & El Hasnaoui, H. (1989). Superposition de trois déformations ductiles hercyniennes dans le Haut At-las (region d’Azegour-Erdouz, Maroc). Comptes Rendus de l’Académie des Sciences, 309(II), 627-632.
  40. Marcoux, É., Breillat, N., Guerrot, C., Négrel, Ph., Berrada, SH., & Selbye, D., (2019). Multi-isotopic tracing (Mo, S, Pb, Re/Os) and genesis of the Mo-W Azegour skarn deposit (High-Atlas, Morocco). Journal of African Earth Sciences, 155, 109-117. https://doi.org/10.1016/j.jafrearsci.2019.04.007
  41. Foord, E.E., & Shawe, D.R. (1989). The Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts: A review and some new data from Colorado, California and Pennsylvania. Canadian Mineralogist, 27, 363-382.
  42. Barton, P.B., & Bethke, P.M. (1987). Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist, 72, 451-467.
  43. Megaw, P.K.M., Ruiz, J., & Titley, S. (1988). High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of Northern Mexico. Economic Geology, 83(8), 1856-1885. https://doi.org/10.2113/gsecongeo.83.8.1856
  44. Thompson, T.B., & Arehart, G.B. (1990). Geology and origin of ore deposits in the Leadville district, Colorado: Part 1. Geologic studies of orebodies and wall rocks. Carbonate-Hosted Sulfide Deposits of the Central Colorado Mineral Belt, 130-155. https://doi.org/10.5382/Mono.07.09
  45. Titley, S.R. (1993). Characteristics of high temperature carbonate-hosted massive sulfide ores in the United States, Mexico and Peru. Mineral Deposit Modeling, 40, 585-614.
  46. Berrada, S.H., Marcoux, E., & Hafid, A. (2015). Le skarn Mo-W-Cu à grenat, wollastonite, pyroxène et vésuvianite d’Azegour (Haut-Atlas, Maroc). Bulletin de la Société Géologique de France, 186(1), 21-34. https://doi.org/10.2113/gssgfbull.186.1.21
  47. Лицензия Creative Commons