Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Wedge stability analysis in fractured soft rock slopes for different orientations of seismic components

Rhita Bennouna1, Latifa Ouadif1, Ahmed Akhssas1, Ahmed Skali Senhaji2, Ghizlane Boulaid1

1Mohammadia School of Engineers, Mohammed V University in Rabat, Rabat, Morocco

2Setec Maroc, Rabat, Morocco


Min. miner. depos. 2024, 18(1):1-8


https://doi.org/10.33271/mining18.01.001

Full text (PDF)


      ABSTRACT

      Purpose. This paper focuses on the case of a rock slope in the Ouarzazate region in order to conduct a sensitive analysis to study the influence of seismic action orientations on wedge stability.

      Methods. To examine the wedge stability, a probabilistic approach related to the Monte Carlo method has been used. Firstly, the characteristics of joint families: orientations and fillings are analysed. Then, the influence of the seismic action on the rock slope stability for the most sensitive plunges is studied using the equations developed by J. Bray (1981). These equations make it possible to ultimately determine the safety factor for predicting the stability of the wedge.

      Findings. In this study, the ranges of values of the seismic action orientations leading to the rock wedge failure have been identified. Especially around the 284° trend, the minimum of the safety factor values have been obtain for different analyzed plunges. This means that the occurrence of an earthquake oriented at 284° and lateral to the slope disposition, oriented at 260°, gives rise to a risk of a slope failure.

      Originality. This study of rock slope stability made it possible to find the minimum safety factor values depending on the orientation of the seismic action by examining its sensitivity to all possible orientations: combinations of plunges and trends.

      Practical implications. This analysis makes it possible to find, whatever the orientation of the seismic action, the safety factor corresponding to the stability of the rock slope. Thus, a decision can be made on the appropriate reinforcement to ensure the rock slope stability, taking into account the case of the most unfavourable seismic action orientation found in this analysis.

      Keywords: stability, seismicity, joints, plunge, trend, safety factor, fracturing


      REFERENCES

  1. Meziane, S., Bahi, L., & Ouadif, L. (2019). Automatic recognition of land instability. International Journal of Recent Technology and Engineering, 8(2), 1972-1977. https://doi.org/10.35940/ijrte.B1967.078219
  2. Driouch, A., Ouadif, L., Lahmili, A., & Belmi, M.A. (2022). Evaluation of the compression potential of serpentine rock masses of the Bou Azzer Mining District in the Central Anti-Atlas of Morocco. Mining, Metallurgy & Exploration, 39, 189-200.https://doi.org/10.1007/s42461-021-00517-5
  3. Hoek, E. (1983). Strength of jointed rock masses. Géotechnique, 23(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187
  4. Bieniawski, Z.T. (1989). Engineering rock mass classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering. Pennsylvania, United States: John Wiley & Sons, 250 p.
  5. Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics and Rock Engineering, 6(4), 189-236. https://doi.org/10.1007/BF01239496
  6. Driouch, A., Ouadif, L., Lahmili, A., & Belmi, M.A. (2021). Correlation between Q-system and rock mass rating of the serpentine rock mass at the Bou Azzer Mine in the Central Anti-Atlas of Morocco. Annals of the Romanian Society for Cell Biology, 25(6), 12726-12733.
  7. Romana, M. (1985). New adjustment ratings for application of Bieniawski classification to slopes. Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, 49-53.
  8. Chen, Z. (1995). Recent developments in slope stability analysis. Proceedings of the 8,sup>th ISRM Congress, 3, 1041-1048.
  9. Tomás, R., Delgado, J., & Serón, J.B. (2007). Modification of slope mass rating (SMR) by continuous functions. International Journal of Rock Mechanics and Mining Sciences, 44, 1062-1069. https://doi.org/10.1016/j.ijrmms.2007.02.004
  10. Tomás, R., Cuenca, A., Cano, A., & García-Barba, J. (2012). A graphical approach for slope mass rating (SMR). Engineering Geology, 124, 67-76. https://doi.org/10.1016/j.enggeo.2011.10.004
  11. Pantelidis, L. (2010). An alternative rock mass classification system for rock slopes. Bulletin of Engineering Geology and the Environment, 69(1), 29-39. https://doi.org/10.1007/s10064-009-0241-y
  12. Goodman, R.E. (1964) the resolution of stresses in rock using stereographic projection. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1(1), 93-103. https://doi.org/10.1016/0148-9062(64)90072-5
  13. Wittke, W.W. (1965). Method to analyse the stability of rock slopes with and without additional loading. Rock mechanics and engineering geology. Vienna, Austria: Springer-Verlag, 52 p.
  14. Coates, D.F. (1967). Rock mechanics principles. Energy mines and resources. Ottawa, Canada: Queen’s Printer, 874 p.
  15. Londe, P., Vigier, G., & Vormeringer, R. (1970). Stability of slopes – graphical methods. ASCE Soil Mechanics and Foundation Division Journal, 96(4), 1411-1434. https://doi.org/10.1061/JSFEAQ.0001446
  16. Hudson, J.A., & Harrison, J.P. (1997). Engineering rock mechanics: An introduction to the principles. Netherlands: Pergamon Press, 444 p.
  17. Mollon, G., Dias, D., & Soubra, A.H. (2009). Probabilistic analysis and design of circular tunnels against face stability. International Journal of Geomechanics, 9(6), 237-249. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(237)
  18. Miro, S., König, M., Hartmann, D., & Schanz, T. (2015). A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study. Computers and Geotechnics, 68(4), 38-53. https://doi.org/10.1016/j.compgeo.2015.03.012
  19. Deng, J., Li, S., Jiang, Q., & Chen, B. (2021). Probabilistic analysis of shear strength of intact rock in triaxial compression: A case study of Jinping II project. Tunnelling and Underground Space Technology, 111(4), 103833. https://doi.org/10.1016/j.tust.2021.103833
  20. Dohyun, P., Kim, H.M., Ryu, D.W., Choi, B.H., & Han, K.C. (2013). Probability-based structural design of lined rock caverns to resist high internal gas pressure. Engineering Geology, 153(GT4), 144-151. https://doi.org/10.1016/j.enggeo.2012.12.001
  21. Oger, J. (2014). Méthodes probabilistes pour l'évaluation de risques en production industrielle. Modélisation et simulation. Thèse doctorale. Tours, Français: Université François Rabelais.
  22. Lu, H., Kim, E., & Gutierrez, M. (2019). Monte Carlo simulation (MCS)-based uncertainty analysis of rock mass quality Q in underground construction. Tunnelling and Underground Space Technology, 94, 103089. https://doi.org/10.1016/j.tust.2019.103089
  23. Fattahi, H., Varmazyari, Z., & Babanouri, N. (2019). Feasibility of Monte Carlo simulation for predicting deformation modulus of rock mass. Tunnelling and Underground Space Technology, 89, 151-156. https://doi.org/10.1016/j.tust.2019.03.024
  24. Sari, M., Karpuz, C., & Ayday, C. (2010). Estimating rock mass properties using Monte Carlo simulation: Ankara andesites. Computers & Geosciences, 36(7), 959-969. https://doi.org/10.1016/j.cageo.2010.02.001
  25. Lahmili, A., Ouadif, L., Akhssas, A., & Bahi, L. (2018). Rock stability analysis – A case study. MATEC Web of Conferences, 149, 02072. https://doi.org/10.1051/matecconf/201814902072
  26. Wyllie, D.C., & Mah, C.W. (2004). Rock slope. Engineering civil and mining. New York, United States: Spon Press, 431 p. https://doi.org/10.1201/9781315274980
  27. Zerradi, Y., Lahmili, A., & Souissi, M. (2020). Stability of a rock mass using the key block theory: A case study. E3S Web of Conferences, 150(2), 03024. https://doi.org/10.1051/e3sconf/202015003024
  28. Hoek, E., & Bray, J. (1981). Rock slope engineering. London, United Kingdom: CRC Press, 364 p. https://doi.org/10.1201/9781482267099
  29. Keefer, D.K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
  30. Seed, H.B., Ugas, C., & Lysmer, J. (1976). Site dependent spectra for earthquake resistant design. Bulletin of the Seismological Society of America, (Berkeley), 66(1), 221-243. https://doi.org/10.1785/BSSA0660010221
  31. Karrech, A., Dong, X., Elchalakani, M., Basarir, H., Shahin, M.A., & Regenauer-Lieb, K. (2021). Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized Hoek-Brown criterion. International Journal of Mining Science and Technology, 32(2), 237-245. https://doi.org/10.1016/j.ijmst.2021.10.005
  32. Changwei, Y., Jingyu, Z., Jing, L., Wenying, Y., & Jianjing, Z. (2017). Slope earthquake stability. Singapore: Springer, 218 p. https://doi.org/10.1007/978-981-10-2380-4
  33. Xu, J., & Yang, X. (2018). Seismic stability analysis and charts of a 3D rock slope in Hoek-Brown media. International Journal of Rock Mechanics and Mining Sciences, 112, 64-76. https://doi.org/10.1016/j.ijrmms.2018.10.005
  34. Zhang, W.G., Meng, F.S., Chen. F, & Liu, H.L. (2021). Effects of spatial variability of weak layer and seismic randomness on rock slope stability and reliability analysis. Soil Dynamics and Earthquake Engineering, 146, 106735. https://doi.org/10.1016/j.soildyn.2021.106735
  35. Zhang, L., Changwei, Y., Ma, S., Guo, X., Yue, M., & Liu, Y. (2020). Seismic response time frequency analysis of bedding rock slope. Frontiers in Physics, 8. https://doi.org/10.3389/fphy.2020.558547
  36. Лицензия Creative Commons