Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Studying sinkholes of the earth’s surface involving radar satellite interferometry in terms of Zhezkazgan field, Kazakhstan

Aminyam Baltiyeva1, Elmira Orynbassarova2, Madiyar Zharaspaev3, Rustem Akhmetov2

1D.A. Kunayev Mining Institute, Almaty, Kazakhstan

2Satbayev University, Almaty, Kazakhstan

3Kazakhmys Corporation LLP, Zhezkazgan, Kazakhstan


Min. miner. depos. 2023, 17(4):61-74


https://doi.org/10.33271/mining17.04.061

Full text (PDF)


      ABSTRACT

      Purpose is to assess the potential of radar satellite interferometry (SAR interferometry) to analyze and forecast earth’s surface displacements.

      Methods. The study involves the analysis of previous instrumental observations, such as high-precision levelling and seismic monitoring. The observations using global navigation satellite systems (GNSS) were carried out; satellite images were processed applying a method of sequential interferometry of persistent radar signal scatters (PS).

      Findings. The research results have proved similarity between the data obtained with the help of ground instrumental methods and the data received using satellite interferometry. Two types of the earth’s surface sinkholes were identified: sinkholes with smooth subsidence and hidden deformations that are not accompanied by the preliminary deformational or seismic signs. Smooth subsidence is controlled and predicted successfully with the help of the SAR interferometry methods. An algorithm has been represented to predict linear displacement trends at different time intervals involving a finite element method.

      Originality is in a complex approach of the research performance covering the following: comparative analysis of different monitoring methods, studying different sinkhole types, identifying limitations of the available methods, and proposing new approaches for more accurate and objective analysis of the earth’s surface deformation within the field.

      Practical implications. The research results are of practical value for rock mechanic specialists and mining operators. They can use the data to monitor and control earth’s surface caving as well as provide staff safety and preserve ground infrastructure where it is possible.

      Keywords: sinkholes, earth’s surface, underground voids, SAR interferometry, forecast


      REFERENCES

  1. Issatayeva, F.M., Aubakirova, G.M., Maussymbayeva, A.D., Togaibayeva, L.I., Biryukov, V.V., & Vechkinzova, E. (2023). Fuel and energy complex of Kazakhstan: Geological and economic assessment of enterprises in the context of digital transformation. Energies, 16(16), 6002. https://doi.org/10.3390/en16166002
  2. Rudko, G.I., Myatchenko, A.V., Isataeva, F.M., & Portnov, V.S. (2018). Geological-economic estimation of Kazakhstan deposits. Sustainable Development of Mountain Territories, 10(4), 471-480. https://doi.org/10.21177/1998-4502-2018-10-4-471-480
  3. Akpanbayeva, A., & Issabek, T. (2023). Assessing a natural field of rock mass stress by means of in-situ measurements within Vostochnaya Sary-Oba deposit in Kazakhstan. Mining of Mineral Deposits, 17(3), 56-66. https://doi.org/10.33271/mining17.03.056
  4. Aubakirova, G., Rudko, G., & Isataeva, F. (2021). Assessment of metallurgical enterprises’ activities in Kazakhstan in the context of international trends. Economic Annals-XXI, 187(1-2), 121-130. https://doi.org/10.21003/EA.V187-12
  5. Nurpeisova, M., Bekbassarov, Z., Kenesbayeva, A., Kartbayeva, K., & Gabitova, U. (2020). Complex evaluation of geodynamic safety in the development of hydrocarbon reserves deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, (1), 90-98. https://doi.org/10.32014/2020.2518-170X.11
  6. Bozzano, F., Mazzanti, P., Prestininzi, A., & Scarascia Mugnozza, G. (2010). Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides, (7), 381-385. https://doi.org/10.1007/s10346-010-0208-x
  7. Minderhoud, P.S., Hlavacova, I., Kolomaznik, J., & Neussner, O. (2020). Towards unraveling total subsidence of a mega-delta–the potential of new PS InSAR data for the Mekong delta. Proceedings of the International Association of Hydrological Sciences, (382), 327-332. https://doi.org/10.5194/piahs-382-327-2020
  8. Bischoff, C.A., Ferretti, A., Novali, F., Uttini, A., Giannico, C., & Meloni, F. (2020). Nationwide deformation monitoring with SqueeSAR® using Sentinel-1 data. Proceedings of the International Association of Hydrological Sciences, (382), 31-37. https://doi.org/10.5194/piahs-382-31-2020
  9. Rokugawa, S., & Nakamura, T. (2015). Long-range ground deformation monitoring by InSAR analysis. Proceedings of the International Association of Hydrological Sciences, (372), 343-346. https://doi.org/10.5194/piahs-372-343-2015
  10. Peter, R., & Jennifer, A. (2005). Technology plan for the terrestrial planet finder interferometer. JPL Publication 05-5. Jet Propulsion Laboratory California Institute of Technology Pasadena, California.
  11. Fielding, E.J., Talebian, M., Rosen, P.A., Nazari, H., Jackson, J.A., Ghorashi, M., & Walker, R. (2005). Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004JB003299
  12. Tran, D.H., & Wang, S.J. (2020). Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proceedings of the International Association of Hydrological Sciences, (382), 361-365. https://doi.org/10.5194/piahs-382-361-2020
  13. Agudelo, G., Wang, G., Liu, Y., Bao, Y., & Turco, M.J. (2020). GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA. Proceedings of the International Association of Hydrological Sciences, (382), 11-18. https://doi.org/10.5194/piahs-382-11-2020
  14. Venmans, A.A., Op De Kelder, M., De Jong, J., Korff, M., & Houtepen, M. (2020). Reliability of InSAR satellite monitoring of buildings near inner city quay walls. Proceedings of the International Association of Hydrological Sciences, (382), 195-199. https://doi.org/10.5194/piahs-382-195-2020
  15. Gandolfi, S., Macini, P., Poluzzi, L., & Tavasci, L. (2020). GNSS measurements for ground deformations detection around offshore natural gas fields in the Northern Adriatic Region. Proceedings of the International Association of Hydrological Sciences, (382), 89-93. https://doi.org/10.5194/piahs-382-89-2020
  16. Abdelsamea, T., Yousef, M.A., Alemam, M.K., & Mostafa, Y.G. (2023). Effect of IGS baseline length on GNSS positioning accuracy. Rudarsko-Geolosko-Naftni Zbornik, 38(3), 81-93. https://doi.org/10.17794/rgn.2023.3.7
  17. Wang, Z., Li, W., Zhao, Y., Jiang, A., Zhao, T., Guo, Q., & Ren, X. (2023). Monitoring ground displacement in mining areas with time-series interferometric synthetic aperture radar by integrating persistent scatterer/slowly decoherent filtering phase/distributed scatterer approaches based on signal-to-noise ratio. Applied Sciences, 13(15), 8695. https://doi.org/10.3390/app13158695
  18. Mendygaliyev, A., Arshamov, Y., Selezneva, V., Yazikov, E., & Bekbotayeva, A. (2021). Prospects for application of multi-spectral earth sensing data in forecasting and searching for reservoir-infiltration uranium deposits. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(446), 90-97. https://doi.org/10.32014/2021.2518-170X.39
  19. Venera, J., Anton, F., Irina, K., & Alena, Y. (2016). SAR interferometry technique for ground deformation assessment on Karazhanbas oilfield. Procedia Computer Science, (100), 1163-1167. https://doi.org/10.1016/j.procs.2016.09.271
  20. Kassymkanova, K.K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17-27. https://doi.org/10.33271/mining17.01.017
  21. Omirzhanova, Z., Kartbayeva, K.T., Aimenov, A.T., & Jazbayev, A.T. (2017). Geodetic measurements of modern movements of the earth surface on Almaty geodynamic polygon. International Multidisciplinary Scientific GeoConference, (17), 337-346.
  22. Sarah, D., Soebowo, E., & Satriyo, N.A. (2021). Review of the land subsidence hazard in Pekalongan Delta, Central Java: Insights from the subsurface. Rudarsko-Geolosko-Naftni Zbornik, 36(4), 163-176. https://doi.org/10.17794/rgn.2021.4.13
  23. Hnatushenko, V.V., Mozhovyi, D.K., & Vasyliev, V.V. (2017). Satellite monitoring of deforestation as a result of mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 94-99.
  24. Jakopec, I., Marendić, A., & Grgac, I. (2022). A novel approach to landslide monitoring based on unmanned aerial system photogrammetry. Rudarsko-Geolosko-Naftni Zbornik, 37(5), 83-101. https://doi.org/10.17794/rgn.2022.5.8
  25. Brandt, J.T., Sneed, M., & Danskin, W.R. (2020). Detection and measurement of land subsidence and uplift using interferometric synthetic aperture radar, San Diego, California, USA, 2016-2018. Proceedings of the International Association of Hydrological Sciences, (382), 45-49. https://doi.org/10.5194/piahs-382-45-2020
  26. Gee, D., Bateson, L., Sowter, A., Grebby, S., Novellino, A., Cigna, F., & Wyatt, L. (2017). Ground motion in areas of abandoned mining: Application of the intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences, 7(3), 85. https://doi.org/10.3390/geosciences7030085
  27. Vlasenko, V., Dudlia, K., & Kyrychenko, M. (2019). Mathematical model of the cracking process in the coal-rock massif under hydrodynamic impact. E3S Web of Conferences, (109), 00111. https://doi.org/10.1051/e3sconf/201910900111
  28. Seitmuratova, E., Arshamov, Y., Bekbotayeva, A., Baratov, R., & Dautbekov, D. (2016). Priority metallogenic aspects of late Paleozoic volcanic-plutonic belts of Zhongar-Balkhash fold system. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 511-518. https://doi.org/10.5593/sgem2016/b11/s01.064
  29. Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rock mass assessment for man-made disaster risk management. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 403-409. https://doi.org/10.1201/b19901-70
  30. Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the subsoil development. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 161-167. https://doi.org/10.1201/b19901-30
  31. Utepov, E.B., Omirbai, R.S., Suleev, D.K., Nurgaliev, A.K., & Ibraeva, G.M. (2015). Developing metallic damping materials. Metallurgist, 58(11-12), 1025-1031. https://doi.org/10.1007/s11015-015-0035-3
  32. Liu, J.B., Dai, H.Y., Wang, X., Shynar, A., & Madimarova, G. (2014). Three-dimensional geological modeling of mining subsidence prediction based on the blocks. Advanced Materials Research, (905), 697-701. https://doi.org/10.4028/www.scientific.net/AMR.905.697
  33. Nurpeisova, M.B., & Kurmanbaev, O.S. (2016). Laws of development of geomechanical processes in the rock mass Maykain mine. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(420), 109-115.
  34. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 13. https://doi.org/10.32014/2020.2518-170X.99
  35. Nurpeisova, M.B., Sarybaiev, O.A., & Kurmanbaiev, O.S. (2016). Study of regularity of geomechanical processes development while developing deposits by the combined way. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30-36.
  36. Baibatsha, A.B., Bekbotayeva, A.A., & Bekbotayev, A.T. (2015). Ore minerals of Carboniferous copper sediment-hosted Zhezkazgan deposit (Central Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 329-335.
  37. Baibatsha, A.B., Bekbotayev, A.T., & Bekbotayeva, A.A. (2013). Ore-bearing strata lithology of the Zhezkazgan copper sandstones deposit. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, (1), 135-140. https://doi.org/10.5593/SGEM2013/BA1.V1/S01.019
  38. Medvedskiy, Yu. (2019). Radiolokatsionnaya interferometriya s sintezirovannoy aperturoy v geodezii. Inzhenernaya Geodeziya, (67), 110-122. https://doi.org/10.32347/0130-6014.2019.67.110-122
  39. Wojtecki, Ł., Kurzeja, J., & Knopik, M. (2021). The influence of mining factors on seismic activity during longwall mining of a coal seam. International Journal of Mining Science and Technology, 31(3), 429-437. https://doi.org/10.1016/j.ijmst.2021.01.010
  40. Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., & Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 279-292.
  41. Akhmetov, R., Makhmetova, G., Orynbassarova, E., Baltiyeva, A., Togaibekov, A., Roberts, K., & Yerzhankyzy, A. (2022). The study of kinematic GNSS surveying for BIM georeferencing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (46), 7-14. https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-7-2022
  42. Herring, T., King, R., Floyd, M., & McClusky, S. (2018). Introduction to GAMIT/GLOBK. Manual. Cambridge, United Kingdom: Massachussetts Insitute of Technology.
  43. Zhantayev, Z., Kaldybayev, A., Bibossinov, A., Vilyaev, A., Turgumbayev, A., & Nurakynov, S. (2018). GPS-derived velocity fields of northern Tien Shan from permanent stations in Kazakhstan. Proceedings of the International Geoscience and Remote Sensing Symposium, 3189-3191. https://doi.org/10.1109/IGARSS.2018.8518103
  44. Segall, P. (1989). Earthquakes triggered by fluid extraction. Geology, 17(10), 942-946. https://doi.org/10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
  45. Portnov, V.S., Yurov, V.M., & Maussymbayeva, A.D. (2016). Applied problems of thermodynamic approach to the analysis of geophysical information. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-11.
  46. Baltiyeva, A., Shamganova, L., Raskaliyev, A., & Koval, E. (2020). Approval of the domestic development of a software and technical complex for a high-precision satellite positioning system at the Kacharsky open-pit mines. International Multidisciplinary Scientific GeoConference, 20(2.2), 27-34. https://doi.org/10.5593/sgem2020/2.2/s09.004
  47. Lanari, R., Casu, F., Manzo, M., & Lundgren, P. (2007). Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sensing of Environment, 109(1), 20-28.https://doi.org/10.1016/j.rse.2006.12.003
  48. Kamza, A.T., Kuznetsova, I.A., & Levin, E.L. (2023). Prediction of the flooding area of the northeastern Caspian Sea from satellite images. Geodesy and Geodynamics, 14(2), 191-200. https://doi.org/10.1016/j.geog.2022.08.003
  49. Han, Y., Liu, G., Liu, J., Yang, J., Xie, X., Yan, W., & Zhang, W. (2023). Monitoring and analysis of land subsidence in Jiaozuo City (China) based on SBAS-InSAR technology. Sustainability, 15(15), 11737. https://doi.org/10.3390/su151511737
  50. Yun, A., Terentyeva, I., & Bochkareva, T. (2015). The choice of the concept of stabilization of the geomechanical situation at the Zhezkazgan field. Surveying Bulletin, (2), 47-52.
  51. Simmons, B.S., & Wempen, J.M. (2021). Quantifying relationships between subsidence and longwall face advance using DInSAR. International Journal of Mining Science and Technology, 31(1), 91-94. https://doi.org/10.1016/j.ijmst.2020.12.021
  52. Smigaj, M., Hackney, C.R., Diem, P.K., Ngoc, N.T., Du Bui, D., Darby, S.E., & Leyland, J. (2023). Monitoring riverine traffic from space: The untapped potential of remote sensing for measuring human footprint on inland waterways. Science of the Total Environment, (860), 160363. https://doi.org/10.1016/j.scitotenv.2022.160363
  53. Yan, W., Guo, J., & Yan, S. (2023). Difference in surface damage between deep and shallow mining of underground coal resources in China. Sustainability, 15(9), 7296. https://doi.org/10.3390/su15097296
  54. Sedina, S., Berdinova, N., Abdikarimova, G., Altayeva, A., & Toksarov, V. (2021). Numerical modeling of the stress-strain state of the kurzhunkul open-pit mine. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(450), 110-117. https://doi.org/10.32014/2021.2518-170X.126
  55. Khanal, M., Adhikary, D., & Balusu, R. (2012). Numerical analysis and geotechnical assessment of mine scale model. International Journal of Mining Science and Technology, 22(5), 693-698. https://doi.org/10.1016/j.ijmst.2012.08.017
  56. Ivadilinova, D.Т., Issabek, T.K., Takhanov D.K., & Yeskenova G.B. (2023). Predicting underground mining impact on the earth’s surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 32-37. https://doi.org/10.33271/nvngu/2023-1/032
  57. Kozhogulov, K.C., Takhanov, D.K., Kozhas, A.K., Imashev, A.Z., & Balpanova, M.Z. (2020). Methods of forward calculation of ground subsidence above mines. Journal of Mining Science, 56(2), 184-195. https://doi.org/10.1134/S1062739120026637
  58. Лицензия Creative Commons