Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Selection of the optimal composition and analysis of the detonating characteristics of low-density mixed explosives applied to break thin ore bodies

Yerdulla Serdaliyev1, Yerkin Iskakov1, Dikhan Amanzholov1

1Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2023, 17(4):53-60


https://doi.org/10.33271/mining17.04.053

Full text (PDF)


      ABSTRACT

      Purpose is to select the optimal composition of the mixed low-density explosive (Es) applied in the form of blasthole charges which provide high efficiency of blasting operations while mining of thin ore deposits. The abovementioned becomes possible while studying features of the foamed polystyrene chemical decomposition and gasification; role of additional water components as well as catalyzator being sodium carboxymethyl cellulose; and analysis of explosive characteristics of the compositions.

      Methods. The research involved lab-based experiments to define application efficiency of the recommended low-density blasting agents through identification of the basic explosive characteristics of the model mixed Es.

      Findings. The optimal composition of the mixed low-density Es has been developed. It consists of ammonia nitrate, diesel fuel, granulated foamed polystyrene, water, and sodium carboxymethyl cellulose to be used to break thin ore bodies. Owing to it, the possibility has arisen to control over a wide range both detonation velocity and pressure of blasting fumes during the charge density increasing or decreasing. The main detonative characteristics of the proposed compositions of low-density Es have been determined helping perform explosive rock mass loading in terms of extremely low values of both energy and explosive characteristics. The developed composition of the mixed low-density Es makes it possible to control quantity of Es energy in a volume well unit by means of increase or decrease in the charge energy concentration depending upon the changes in the rock mass resistance; in such a way, efficient breakage of thin ore bodies is provided inclusive of less dilution indicators.

      Originality. For the first time, dependence of the relative efficiency of the mixed low-density Es upon the foamed polystyrene volume content has been identified as well as dependence of pressure of blasting fumes upon the charging density.

      Practical implications are the development of procedures for blasting operations while thin ore body mining. The procedures are based upon formulating of the optimal composition of low-density Es differing in its simplicity, safety, and efficiency; and helping reduce prime cost of the extracted mineral at the expense of the decreased degree of the ore dilution. An empiric formula to define specific consumption of the low-density Es has been proposed for Akbakay mine.

      Keywords: rock mass, ore deposits, breakage, mining, dilution, ore, explosive, charge density


      REFERENCES

  1. Atakhanova, Z., & Azhibay, S. (2023). Assessing economic sustainability of mining in Kazakhstan. Mineral Economics, (36), 719-731. https://doi.org/10.1007/s13563-023-00387-x
  2. Portnov, V.S., Yurov, V.M., Maussymbayeva, A.D., Kassymov, S.S., & Zholmagambetov, N.R. (2017). Assessment of radiation risk at the population from pits, dumps and tailing dams of uranium mines. International Journal of Mining, Reclamation and Environment, 31(3), 205-211. https://doi.org/10.1080/17480930.2016.1268801
  3. Begalinov, A., Shautenov, M., Almenov, T., & Bektur, B. (2022). Leaching process intensification of gold-bearing raw materials. Mining of Mineral Deposits, 16(2), 42-48. https://doi.org/10.33271/mining16.02.042
  4. Safonov, A.A., Mausymbaeva, A.D., Portnov, V.S., Parafilov, V.I., & Korobko, S.V. (2019). Analysis of potential use of coal from the Shubarkol deposit in technical silicon smelting. Ugol, (2), 68-72. https://doi.org/10.18796/0041-5790-2019-2-68-72
  5. Guggari, V.B., Kumar, H., & Budi, G. (2023). Numerical analysis for assessing the effects of crown pillar thickness on ore dilution around the sub-level open stopes. Ain Shams Engineering Journal, 15(1), 102301.https://doi.org/10.1016/j.asej.2023.102301
  6. Mussin, A., Imashev, A., Matayev, A., Abeuov, Y., Shaike, N., & Kuttybayev, A. (2023). Reduction of ore dilution when mining low-thickness ore bodies by means of artificial maintenance of the mined-out area. Mining of Mineral Deposits, 17(1), 35-42. https://doi.org/10.33271/mining17.01.035
  7. Alfaro, R., Maleki, M., Madani, N., & Soltani-Mohammadi, S. (2023). Comparing the accuracy of two approaches to account for internal dilution: A case study from a porphyry copper deposit. International Journal of Mining, Reclamation and Environment, 37(6), 441-459. https://doi.org/10.1080/17480930.2023.2192030
  8. Baibatsha, A., Dyussembayeva, K., & Kassenova, A. (2015). Microparagenetic associations of gold in ore-forming minerals from deposits of different geological and industrial types of Kazakhstan. Proceedings of the 11th International Congress for Applied Mineralogy, 1-8. https://doi.org/10.1007/978-3-319-13948-7_1
  9. Begalinov, A., Shautenov, M., Medeuov, C., Almenov, T., & Bektur, B. (2021). Mechanochemical activation of the processing of gold-bearing sulfide raw materials. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(450), 46-52. https://doi.org/10.32014/2021.2518-170X.118
  10. Heinhorst, J., Lehmann, B., Ermolov, P., Serykh, V., & Zhurutin, S. (2000). Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. Tectonophysics, 328(1-2), 69-87. https://doi.org/10.1016/S0040-1951(00)00178-5
  11. Serdaliyev, Y., Iskakov, Y., Molodykh, A., & Amangeldi, S. (2022). Study of the influence of the width of the stope on the choice of drilling and blasting parameters in the development of thin deposits. Current Issues and Prospects for The Development of Scientific Research, 20(105), 347-352. https://doi.org/10.51582/interconf.19-20.04.2022.034
  12. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-31
  13. Begalinov, A., Serdaliyev, Y., Abshayakov, E., Bakhramov, B., & Baigenzhenov, O. (2015). Extraction technology of fine vein gold ores. Metallurgical and Mining Industry, 7(4), 312-320.
  14. Hunt, W., & La Rosa, D. (2019). How to use heave, movement, and ore block optimization to increase grade and decrease dilution. SME Annual Conference and Expo and CMA 121st National Western Mining Conference, 151537.
  15. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54.
  16. Fedko, M.B., Kolosov, V.A., Pismennyy, S.V., & Kalinichenko, Ye.A. (2014). Economic aspects of change-over to TNT-free explosives for the purposes of ore underground mining in Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-84.
  17. Serdaliev, E.T., Iskakov, E.E., Bakhramov, B.A., & Amanzholov, D.B. (2023). Issledovanie seysmicheskogo vozdeystviya vzryva na massiv pri otrabotke malomoshchnykh rudnykh zalezhey. Mining Journal of Kazakhstan, (9), 8-10.
  18. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., & Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-10.
  19. Vlasiy, O., Mazurenko, V., Ropyak, L., & Rogal, A. (2017). Improving the alluminum drill pipes stability by optimizing the shape of protector thickening. Eastern-European Journal of Enterprise Technologies, 1(7(85)), 25-31. https://doi.org/10.15587/1729-4061.2017.65718
  20. Chudyk, І.І., Femiak, Ya.M., Orynchak, М.І., Sudakov A.K., & Riznychuk А.І. (2021). New methods of preventing crumbling and collapse of the borehole walls. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 17-22. https://doi.org/10.33271/nvngu/2021-4/017
  21. Brahimaj, F., Zeqiri, I., Dambov, R., & Brahimaj, S. (2022). Impact of drilling angle on blasting costs in surface works. Rudarsko-Geološko-Naftni Zbornik, 37(4), 71-81. https://doi.org/10.17794/rgn.2022.4.6
  22. Begalinov, A.B., Serdaliev, E.T., Iskakov, E.E., & Amanzholov, D.B. (2013). Shock blasting of ore stockpiles by low-density explosive charges. Journal of Mining Science, 49(6), 926-931. https://doi.org/10.1134/s1062739149060129
  23. Himanshu, V.K., Mishra, A.K., Roy, M.P., & Singh, P.K. (2023). Drivage excavation using drilling and blasting. Blasting Technology for Underground Hard Rock Mining, 49-63. https://doi.org/10.1007/978-981-99-2645-9_4
  24. Sun, H., Liu, Y., Jiang, T., Liu, T., & Liu, D. (2023). Application of dust control method based on water medium humidification in tunnel drilling and blasting construction environment. Building and Environment, (234), 110111.
  25. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V. & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 37-41.https://doi.org/10.29202/nvngu/2019-1/20
  26. Malanchuk, Z., Moshynskyi, V., Malanchuk, Ye., Korniyenko, V., Vasylchuk, O., Zaiets, V., & Kucheruk, M. (2023). Impact by the operating and structural parameters of a screen on the technological parameters of vibratory basalt sieving. Mining of Mineral Deposits, 17(2), 35-43. https://doi.org/10.33271/mining17.02.035
  27. Aleksandrova, T., Nikolaeva, N., Afanasova, A., Romashev, A., Aburova, V., & Prokhorova, E. (2023). Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals, 13(1), 84. https://doi.org/10.3390/min13010084
  28. Kulinowski, P., Kasza, P., & Zarzycki, J. (2021). Identification of the operating parameters of the friction drum drive in industrial conditions. Eksploatacja i Niezawodność, 23(1), 94-102. https://doi.org/10.17531/ein.2021.1.10
  29. Zhang, C., Li, D., Ma, J., Zhu, Q., Luo, P., Chen, Y., & Han, M. (2023). Dynamic shear fracture behavior of rocks: Insights from three-dimensional digital image correlation technique. Engineering Fracture Mechanics, (277), 109010.
  30. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 231-235. https://doi.org/10.1201/b16354-43
  31. Rakishev, B., Gurjevsky, B., & Begalinov, A. (2018). Optimal development of the quarry’s working zone by the complex deposits exploitation. Mine Planning and Equipment Selection, 123-126. https://doi.org/10.1201/9780203747124-23
  32. Jin, Y.H., Min, H.D., Jeong, M.S., Park, Y.S., Heo, E.H., & Nurmatov, M. (2014). Suggesting blasting design for Kazakhstan mine using Korea mining technology. Explosives and Blasting, 32(1), 10-17.
  33. Wensu, C., Hong, H., & Dylan, H. (2015). Static and dynamic mechanical properties of expanded polystyrene. Materials and Design, (69), 170-180.https://doi.org/10.1016/j.matdes.2014.12.024
  34. Tambiev, P.G. (2015). Izgotovlenie vzryvchatykh veshchestv iz nevzryvchatykh komponentov i kompleksnaya mekhanizatsiya vzryvnykh rabot. Almaty, Kazakhstan: KITs TOO, 392 s.
  35. Torpishchev, Sh.K., & Torpishchev, F.Sh. (2005). Innovatsionnye perspektivy ispolzovaniya v stroitelstve otvalnykh shlamov glinozemnogo proizvodstva. Nauka i Tekhnika Kazakhstana, (3), 173-185.
  36. Song, B., Chen, W.W., Dou, S., Winfree, N.A., & Kang, J.H. (2005). Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam. International Journal of Impact Engineering, 31(5), 509-521.https://doi.org/10.1016/j.ijimpeng.2004.02.003
  37. Luca, D., Giuseppe, S., & Daniela, O. (2002). Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polymer Testing, 21(2), 217-228. https://doi.org/10.1016/S0142-9418(01)00073-3
  38. Heltzen, A.M. (1977). Controlled blasting in the building industry. Oslo, Norway, 11 p.
  39. Beju, Y., & Mandal, J. (2017). Expanded polystyrene (EPS) geofoam: Preliminary characteristic evaluation. Procedia Engineering, (189), 239-246. https://doi.org/10.1016/j.proeng.2017.05.038
  40. Nifadyev, V.I., & Kalinina, N.M. (1998). Nizkoplotnye i sverkhnizkoplotnye vzryvchatye smesi. Bishkek, Kyrgyzstan: Ilim, 188 s.
  41. Baranov, E.G., Beketaev, E.B., & Kineev, T.D. (1976). Sposob upravleniya energiey vzryva skvazhinnykh zaryadov na osnove primeneniya granulirovannogo penopolistirola v sostave promyshlennykh vzryvchatykh vechshestv. Primenenie Vzryva v Gornom i Stroitelnom Dele, 25-30.
  42. Лицензия Creative Commons